首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain slices were used to study the effects of different metabotropic glutamate receptor ligands on (i) the depolarization (30 mM KCl)-induced outflow of previously taken up d-[3H]aspartate; (ii) the inhibition of forskolin (30 μM)-induced cyclic AMP accumulation; and (iii) the hydrolysis of phosphoinositides. In addition, the localization of mRNAs coding for different metabotropic glutamate receptor subtypes was detected using in situ hybridization. (1S,3R)-1-Aminocyclopentane-1,3-dicarboxylic acid (30–300 μM), a non selective metabotropic glutamate receptor agonist, significantly increased the KCl-induced output of radioactivity from cortical slices, whereas it inhibited the output from striatal slices. Conversely, (1S,3S,4S)-carboxycyclopropylglycine (0.1–1 μM), a relatively selective agonist of the mGluR2 metabotropic glutamate receptor subtype, had an inhibitory effect on the output of d-[3H]aspartate from both cortical and striatal slices and proved to be the most potent metabotropic glutamate receptor agonist in inhibiting cyclic AMP accumulation, but not in stimulating phosphoinositide hydrolysis. Since 2-amino-4-phosphonobutyrate (a mGluR4, mGluR6 and mGluR7 agonist) was not active in any of the assays tested, we hypothesized that the mGluR2 subtype could be involved in these events. Accordingly, mGluR2 mRNA expression was abundant in cortical neurons projecting to the striatum. Our experiments suggest that the stimulation of metabotropic glutamate receptors may either decrease or increase transmitter release depending on the subtype that prevails in the region under study.  相似文献   

2.
Abstract: Glutamate activates a family of receptors, known as metabotropic glutamate receptors (mGluRs), that are coupled to various second messenger systems through G proteins. All mGluR subtypes characterized to date in rat brain slices are activated by the glutamate analogue 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (1 S ,3 R -ACPD). However, few agonists are available that selectively activate specific mGluR subtypes. We report that the glutamate analogue ( R,S )-4-bromohomoibotenate (BrHI) stimulates phosphoinositide hydrolysis in rat cerebral cortical slices in a concentration-dependent manner (EC50 = 190 µ M ). The response to BrHI is stereoselective and is not blocked by ionotropic glutamate receptor antagonists. It is interesting that the responses to BrHI and 1 S ,3 R -ACPD are completely additive, suggesting that these responses are mediated by different receptor subtypes. Consistent with this, the response to BrHI is insensitive to l -2-amino-3-phosphonopropionic acid ( l -AP3), whereas the response to 1 S ,3 R -ACPD is partially blocked by l -AP3. BrHI does not activate metabotropic receptors coupled to changes in cyclic AMP accumulation or activation of phospholipase D. Thus, BrHI seems to activate specifically a phosphoinositide hydrolysis-linked mGluR that is insensitive to 1 S ,3 R -ACPD. This compound may prove useful as a tool for elucidating the roles of different mGluR subtypes in mammalian brain.  相似文献   

3.
In cerebral cortical slices from the guinea-pig, quinoxalinedione derivatives antagonised the generation of 3H-inositol phosphates evoked by the excitatory amino acids quisqualate and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid but were without effect on the trans-DL-1-amino-1,3-cyclopentanedicarboxylic acid and L-glutamate responses. Omission of calcium from the medium reduced the accumulation of 3H-inositol phosphates induced by incubation with trans-DL-1-amino-1,3-cyclopentanedicarboxylic acid (incubation for 45 min) by greater than 50%, whereas the responses to L-glutamate and the two other amino acid analogues were reduced by approximately 20%. Generation of inositol 1,4,5-trisphosphate over a 30-s period by treatment with quisqualate, trans-DL-1-amino-1,3-cyclopentane-dicarboxylic acid, KCl, and carbachol was abolished in the presence of nominally calcium-free medium. L-Glutamate induced a large, rapid increase in inositol 1,4,5-trisphosphate mass (more than three-fold), which was, however, unaffected by omission of calcium from the medium. These results indicate that of the excitatory amino acids tested, only L-glutamate may be classed as a metabotropic receptor agonist in guinea-pig cerebral cortical slices with respect to generation of inositol phosphates. The other agents appear to stimulate accumulation of inositol phosphates, at least in part through some mechanism requiring the presence of extracellular Ca2+, presumably Ca2+ entry.  相似文献   

4.
The effects of the selective metabotropic glutamate receptor agonist 1-aminocyclopentane-trans-1,3-dicarboxylate (t-ACPD) on forskolin-stimulated cyclic AMP formation in guinea-pig cerebral cortex slices were determined. t-ACPD inhibited the accumulation of [3H]cyclic AMP by approximately 80%, with an IC50 value of 35 +/- 4 microM. The effect was reversible and stereoselective, with the 1S,3R isomer being approximately 400-fold more potent than the 1R,3S isomer. L-Glutamate (over a restricted concentration range) also partially inhibited the response to forskolin, but quisqualate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and N-methyl-D-aspartate (NMDA) were ineffective. The effect of t-ACPD was not blocked by antagonists of the phospholipase C-linked metabotropic glutamate receptor, the AMPA ionotropic glutamate receptor, or the NMDA receptor. In summary, our results indicate the presence of a glutamate receptor in guinea-pig brain that is activated selectively by t-ACPD and that is negatively linked to adenylyl cyclase.  相似文献   

5.
The cytosolic release of L-glutamate has been held to be responsible for the increase in extracellular glutamate to toxic levels in the brain. The mechanism and regulation of this release was now studied in cerebral cortical and striatal slices with D-[3H]aspartate, a non-metabolized analogue of L-glutamate and a poor substrate for vesicular uptake. L-Glutamate and D-aspartate strongly stimulated the release in a concentration-dependent manner. Of the ionotropic glutamate receptor agonists, only kainate enhanced the basal release in the striatum. Of the metabotropic glutamate receptor ligands, the group I agonist (S)-3,5-dihydroxyphenylglycine (S-DHPG) failed to affect the basal release but inhibited the D-aspartate-evoked release in the striatum. The group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) had no effect on the basal release in either preparation but enhanced the L-glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum, not however in the cerebral cortex. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG IV) and the group II antagonist (2S)-2-ethylglutamate (EGLU) were without effect on the basal, D-aspartate- and L-glutamate-evoked releases of D-[3H]aspartate in either preparation. The group III agonist L-serine-O-phosphate (L-SOP) failed to affect the basal release but reduced the D-aspartate-evoked release in the striatum. The group III antagonist (RS)-methylserine-O-phosphate (MSOP) failed to affect the basal release but increased the glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum. Both L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) and (2S, 1S, 2R)-2-carboxycyclopropyl)glycine (L-CCG-III), transportable inhibitors of the high-affinity glutamate uptake, enhanced the basal release, more strongly in the striatum than in the cerebral cortex. L-CCG-III also increased the L-glutamate-evoked release in the striatum. Nontransportable dihydrokainate enhanced the basal release much less and failed to affect the glutamate-evoked release. The results indicate that the release of glutamate from cytosolic pools is carrier-mediated via homoexchange. This process is regulated in the striatum by metabotropic group I and group III receptors in a manner different from the regulation of the vesicular release of glutamate from presynaptic terminals.  相似文献   

6.
Abstract: Phospholipase D (PLD) is activated by many neuro-transmitters in a novel signal transduction pathway. In the present work, PLD activity was studied comparatively in hippocampal slices of newborn and adult rats. Basal PLD activity in adult rats was almost three times higher than in newborn rats. In newborn rats, L-glutamate and 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid (1 S ,3 R -ACPD) time- and concentrationdependently enhanced the formation of [3H]phosphatidylpropanol ([3H]PP) and of [3H]phosphatidic acid in the presence of 2% propanol. N -MethylD-aspartate and kainate (both 1 m M ) caused small, but significant increases (∼50%). whereas α-amino-3-hydroxy-5-methylisoxazole-4-propionate (100 μ M ) was ineffective. Maximally effective concentrations of glutamate (1 m M ) and of 1 S ,3 R -ACPD (300 μ M ) increased the PLD activity to almost 300% of basal activity; the EC50 values were 199 and 47 μ M , respectively. Glutamate receptor antagonists, such as DL-2-amino-3-phosphonopropionic acid (AP3). DL-2-aminc-5-phosphonovalenic acid, and kynurenate (all 1 m M ) did not inhibit the glutamate-evoked increase of PP formation. In slices of adult rats, the response to 1 S ,3 R -ACPD was significant, but small, whereas glutamate was effective only in the presence of the glutamate uptake inhibitor L-aspartate-β-hydroxarnate. It is concluded that glutamate activates PLD in rat hippocampus through an AP3-resistant metabotropic receptor. This effect is subject to ontogenetic development, with one important factor being glutamate uptake.  相似文献   

7.
I Aramori  S Nakanishi 《Neuron》1992,8(4):757-765
The signal transduction and pharmacological properties of a metabotropic glutamate receptor, mGluR1, were studied in CHO cells permanently expressing the cloned receptor. mGluR1 stimulated phosphatidylinositol (PI) hydrolysis in the potency rank order of quisqualate greater than L-glutamate greater than or equal to ibotenate greater than L-homocysteine sulfinate greater than or equal to trans-ACPD. This receptor also evoked the stimulation of cAMP formation and arachidonic acid release with comparable agonist potencies. DL-AP3 and L-AP4, the effective antagonists reported for glutamate-stimulated PI hydrolysis in brain slices, showed no appreciable effects on mGluR1, suggesting the existence of an additional subtype of this receptor family. Pertussis toxin and phorbol ester produced distinct effects on the three transduction cascades, implying that mGluR1 independently links to the multiple transduction pathways probably through different G proteins.  相似文献   

8.
The effects of depolarizing stimuli; high (50 mM) potassium ions and the glutamate receptor agonists N-methyl-D-aspartate, kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) on the release of newly-loaded [3H]dopamine were studied in frontal cortical and striatal slices from control rats and from rats with acute hepatic encephalopathy induced with a hepatotoxin, thioacetamide. Hepatic encephalopathy enhanced the stimulatory effect of potassium ions by 20% in striatal slices and by 34% in frontal cortical slices. In striatal slices the stimulatory effects of N-methyl-D-aspartate and kainate were depressed in hepatic encephalopathy by 46% and 21%, respectively, which may be taken to reflect impaired modulation of striatal dopamine release by glutamate acting at N-methyl-D-aspartate or kainate receptors. In frontal cortical slices, the stimulatory effect of kainate was enhanced by 35% in hepatic encephalopathy but N-methyl-D-aspartate-stimulated release was not affected. The release evoked by 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate was not affected in hepatic encephalopathy in either brain region. Stimulation of dopamine release in the frontal cortex by depolarization or glutamate acting at kainate receptors could inhibit the activity of descending corticostriatal glutamatergic pathways, further impairing regulation of dopamine release by glutamate in the stratum.  相似文献   

9.
L He  DJ Linden  A Sapirstein 《PloS one》2012,7(8):e42194
Functional hyperemia of the cerebral vascular system matches regional blood flow to the metabolic demands of the brain. One current model of neurovascular control holds that glutamate released by neurons activates group I metabotropic glutamate receptors (mGluRs) on astrocytes, resulting in the production of diffusible messengers that act to regulate smooth muscle cells surrounding cerebral arterioles. The acute mouse brain slice is an experimental system in which changes in arteriole diameter can precisely measured with light microscopy. Stimulation of the brain slice triggers specific cellular responses that can be correlated to changes in arteriole diameter. Here we used inositol trisphosphate receptor type 2 (IP(3)R2) and cytosolic phospholipase A(2) alpha (cPLA(2)α) deficient mice to determine if astrocyte mGluR activation coupled to IP(3)R2-mediated Ca(2+) release and subsequent cPLA(2)α activation is required for arteriole regulation. We measured changes in astrocyte cytosolic free Ca(2+) and arteriole diameters in response to mGluR agonist or electrical field stimulation in acute neocortical mouse brain slices maintained in 95% or 20% O(2). Astrocyte Ca(2+) and arteriole responses to mGluR activation were absent in IP(3)R2(-) (/-) slices. Astrocyte Ca(2+) responses to mGluR activation were unchanged by deletion of cPLA(2)α but arteriole responses to either mGluR agonist or electrical stimulation were ablated. The valence of changes in arteriole diameter (dilation/constriction) was dependent upon both stimulus and O(2) concentration. Neuron-derived NO and activation of the group I mGluRs are required for responses to electrical stimulation. These findings indicate that an mGluR/IP(3)R2/cPLA(2)α signaling cascade in astrocytes is required to transduce neuronal glutamate release into arteriole responses.  相似文献   

10.
Repeated cocaine exposure enhances glutamatergic output from the medial prefrontal cortex to subcortical brain regions. Loss of inhibitory control of cortical pyramidal neurons may partly account for this augmented cortical glutamate output. Recent research indicated that repeated cocaine exposure reduced the ability of cortical Group II metabotropic glutamate receptors to modulate behavioral and neurochemical responses to cocaine. Thus, experiments described below examined whether repeated cocaine exposure alters metabotropic glutamate receptor regulation of mesocorticolimbic glutamatergic transmission using in vivo microdialysis. Infusion of the Group II metabotropic glutamate receptor antagonist LY341495 into the medial prefrontal cortex enhanced glutamate release in this region, the nucleus accumbens and the ventral tegmental area in sensitized animals, compared to controls, following short-term withdrawal but not after long-term withdrawal. Additional studies demonstrated that vesicular (K(+)-evoked) and non-vesicular (cystine-evoked) glutamate release in the medial prefrontal cortex was enhanced in sensitized animals, compared to controls, that resulted in part from a reduction in Group II metabotropic glutamate receptor modulation of these pools of glutamate. In summary, these findings indicate that the expression of sensitization to cocaine is correlated with an altered modulation of mesocorticolimbic glutamatergic transmission via reduction of Group II metabotropic glutamate receptor function.  相似文献   

11.
Yang N  Dai SS  Ning YL  Chen XY  Zhao Y  Li P  Zhou YG 《生理学报》2010,62(6):555-559
The aim of this study is to investigate the effect of (S)-4-carboxy-3-hydroxy-phenylglycine [(S)-4C3HPG], a mixed group I glutamate metabotropic receptor antagonist and a group II agonist, on impairment in a cortical impact model of traumatic brain injury (TBI) in mice and to elucidate the possible mechanisms. Mice were injected (i.p.) with saline, 1 mg/kg (S)-4C3HPG, 5 mg/kg (S)-4C3HPG and 10 mg/kg (S)-4C3HPG (n=10 per group), respectively, at 30 min before moderate TBI. Neurological deficit scores, water content in injured brain and glutamate concentration in cerebral spinal fluid (CSF) were detected at 24 h after TBI. The expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA in injured cortex were also detected by real-time RT-PCR. The results showed that the neurological deficits and cerebral edema were significantly attenuated in mice pretreated with (S)-4C3HPG (5 and 10 mg/kg respectively) compared with those in mice pretreated with saline. Furthermore, (S)-4C3HPG treatment also decreased the glutamate concentration in CSF and the expressions of TNF-α and IL-1β mRNA remarkably in a dose-dependent manner. These results suggest that (S)-4C3HPG treatment attenuates cortical impact-induced brain injury possibly via suppression of glutamate release and inhibition of excessive inflammatory cytokine production. These findings highlight the potential benefit of glutamate metabotropic receptor ligand for preventing TBI.  相似文献   

12.
Hybrid cells obtained by fusion of myeloma PX63-Ag8-653 with immune splenocytes of BALB/c mice were found to produce monoclonal antibodies with a high degree of specificity to rat and human brain. The kinetics of specific IgG binding to purified fractions of glutamate-binding membrane proteins from rat and human brain were analyzed in Scatchard plots. The presence of a single type of binding sites with Kd = 100 nM was demonstrated. The monoclonal antibodies were shown to inhibit the specific binding of tritium-labeled L-glutamate to different brain synaptic membranes. Addition of monoclonal antibodies to the incubation medium induced a modulating effect of physiological responses to L-glutamate in Planorbarius corneus neurons. The possible use of specific antibodies to glutamate-binding proteins as immunochemical markers for the study of glutamate receptor topography on membrane surface was demonstrated with the aid of neuroblastoma cells N18 Tg2a and rat brain tissue slices. An analysis of glutamate receptor binding sites with the use of monoclonal antibodies revealed that these antibodies specifically recognize the active center in the receptor molecules which have identical antigen determinant sites in different biological systems.  相似文献   

13.
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.  相似文献   

14.
The effects of cholecystokinin (CCK) agonists and antagonists on spontaneous and electrically evoked endogenous GABA release from rat cerebral cortex slices were evaluated. Neither the nonselective and CCK(B)-selective receptor agonists CCK-8S (3-1,000 nM) and CCK-4 (3-1,000 nM), respectively, nor the selective CCK(B) and CCK(A) receptor antagonists GV 150013 (3-30 nM) and L-364,718 (10-100 nM), respectively, significantly affected spontaneous GABA release. CCK-8S (1-1,000 nM) and CCK-4 (1-1,000 nM) increased the electrically (5 and 10 Hz)-evoked GABA release. On the contrary, GV 150013 (10 and 30 nM) significantly decreased the electrically evoked GABA release only when the slices were stimulated at the higher 10 Hz frequency. The CCK-8S- and CCK-4-induced increases in electrically evoked GABA release were counteracted by GV 150013, but not by L-364,718. Furthermore, GV 150013 at 3 nM shifted to the right the CCK-4 concentration-response curve, whereas at the higher 10 nM concentration it dramatically flattened the curve. Finally, in cortical slices obtained from rats chronically treated with GV 150013, the concentration-response curve of CCK-4 was shifted to the left and the peak effect of the peptide was significantly higher than that observed in naive animals. These results suggest that CCK increases electrically evoked, but not spontaneous, endogenous GABA release from rat cortical slices, possibly by activating local CCK(B) receptors. In addition, chronic treatment with the novel CCK(B) receptor antagonist GV 150013 leads to an enhanced responsiveness of cortical slices to CCK-4 application.  相似文献   

15.
Abstract: Displacement of [3H]glutamate by 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid and quisqualate (in the presence of saturating concentrations of ionotropic glutamate receptor agonists) was used to characterize optimal ionic conditions, distribution, and the ontogeny of glutamate receptor binding sites in rat brain. Using rat forebrain membranes or receptor autoradiography, optimal 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive [3H]glutamate binding was found in the presence of 100 m M bromide ions and in the absence of calcium ions. Under these conditions, [3H]glutamate binding was relatively quisqualate insensitive. In regions of the neonatal (11-day-old) and adult rat brain, this [3H]glutamate binding was highest in forebrain (striatum, cerebral cortex, and hippocampus) and hypothalamus/midbrain but was lower in the cerebellum, olfactory bulb, and pons/medulla regions. 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive and quisqualate-insensitive [3H]glutamate binding was present in the rat forebrain at 1 day of age and gradually increased more than twofold by day 50 (adult). Thus, in the presence of bromide ions and in the absence of calcium ions, [3H]glutamate labels a subpopulation of metabotropic glutamate receptors that are sensitive to 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid but insensitive to quisqualate. Expression of [3H]glutamate binding under these conditions was both regionally and developmentally regulated in rat brain, suggesting that [3H]glutamate is labeling a distinct population of metabotropic glutamate receptors.  相似文献   

16.
Substance P and glutamate are present in primary afferent C-fibers and play important roles in persistent inflammatory and neuropathic pain. In the present study, we have examined whether activation of different glutamate receptor subtypes modulates the release of substance P evoked by the C-fiber selective stimulant capsaicin (1 μM) from rat trigeminal nucleus slices. The selective NMDA glutamate receptor agonist L-CCG-IV (1–10 μM) enhanced capsaicin-evoked substance P release about 100%. This facilitatory effect was blocked by 0.3 μM MK-801, a selective NMDA receptor antagonist. The metabotropic glutamate receptor agonists L-AP4 (group III) and DHPG (group I) (30–100 μM) inhibited capsaicin-evoked substance P release by approximately 60%. These inhibitory effects were blocked by the selective metabotropic glutamate receptor antagonist (±)-MCPG (5 μM). On the other hand, AMPA and kainate (0.1–10 μM), did not significantly affect capsaicin-evoked substance P release. Thus, substance P release from non-myelinated primary afferents, and possibly nociception, may be under the functional antagonistic control of some metabotropic and ionotropic glutamate receptor subtypes.  相似文献   

17.
gamma-Aminobutyric acid (GABA)-stimulated release of L-glutamate from various neuronal regions of acute mouse hippocampal slices was detected with a patch sensor that responds to L-glutamate at the sub-micromolar level. The response of the patch sensor to L-glutamate was evaluated in terms of an integrated current. The integrated current increased with the concentration of L-glutamate ranging from 0.50 to 5.0 microM. By using the patch sensor, GABA-induced L-glutamate release from acute mouse hippocampal slices was detected. The effect of antagonists for GABA(A) and GABA(B) receptors on the L-glutamate release was also investigated. The GABA (25 microM) stimulation induced the release of L-glutamate via GABA(A) receptor in the CA1 region, but GABA did not induce L-glutamate release in the CA3 region. However, in the presence of the GABA(B) receptor antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP-35348), release of L-glutamate in the CA3 region was evoked by GABA stimulation. The glutamate release was completely suppressed when both GABA(A) and GABA(B) receptor were inhibited. The current results show that the glutamate release in the CA3 region occurs via a GABA(A) pathway when GABA(B) receptors are inhibited.  相似文献   

18.
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.  相似文献   

19.
The involvement of glutamate receptors in GABA release in ischemia was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice. For in vitro ischemia, the slices were superfused in glucose-free media under nitrogen. Ionotropic glutamate receptor agonists failed to affect the ischemia-induced basal GABA release at either age. The K(+)-stimulated release in the immature hippocampus was potentiated by N-methyl-D-aspartate receptors, whereas in adults this release was reduced by both kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor activation. The group I metabotropic receptor agonist (1+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal ischemic GABA release in a receptor-mediated manner in adults, this being concordant with the positive modulation of GABAergic neurotransmission by group I metabotropic glutamate receptors. (1 +/-)-1-Aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine also enhanced the K(+)-stimulated release in the developing hippocampus in a receptor-mediated manner. Because group I receptors generally increase neuronal excitability, the enhanced GABA release may attenuate hyperexcitation or strengthen inhibition, being thus neuroprotective, particularly under ischemic conditions. Group III metabotropic glutamate receptors were not at all involved in ischemic GABA release in the immature mice, but in adults their activation by O-phospho-L-serine potentiated the basal release and reduced the K(+)-stimulated release. These opposite effects were abolished by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Metabotropic glutamate receptors, namely group I and III receptors, are able to modify the release of GABA from hippocampal slices under ischemic conditions, both positive and negative effects being discernible, depending on the age and type of receptor activated.  相似文献   

20.
《Life sciences》1995,57(20):PL327-PL332
Facilitatory effects of prenalterol and albuterol (β1- and β2-selective adrenergic agonists, respectively) in the absence and presence of propranolol (a nonselective β-adrenergic antagonist), ICI 89,406 or ICI 118,551 (β1- and β2-selective adrenergic antagonists, respectively) on electrical stimulation-evoked release of 3H-NE from rat cerebral cortical slices were assessed. Albuterol (0.1 –100 nM) increased evoked release of 3H-NE from the cerebral cortical slices with greater potency than prenalterol (1 – 100 nM). The β2-adrenergic antagonist ICI 118,551 (1 nM) and propranolol (50 nM) abolished the facilitatory effects of albuterol (0.1 and 10 nM). In contrast, the βl-adrenergic antagonist ICI 89,406 (1 nM) did not alter the release-enhancing effect of albuterol. Prenalterol (10 and 100 nM)-induced facilitation of evoked release of 3H-NE was abolished by ICI 118,551; propranolol reduced the effect of 10 nM prenalterol and abolished that of 100 nM prenalterol. ICI 89,406 inhibited the effect of 100 nM prenalterol without altering that of 10 nM prenalterol. Basal release of 3H-NE was not altered by the drugs used in this study. These results suggest that facilitation of 3H-NE release induced by β-adrenergic agonists is mediated primarily by β2-adrenergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号