首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ultraviolet (UV-B) radiation on the accumulation and tissue localization of phenolic compounds in two strains of callus cultures of tea plant (Camellia sinensisL.) were investigated. The strains differed in their morphological and physiological characteristics and biosynthetic capacity. UV-B radiation hampered culture growth, decreased the size of callus-forming cells and promoted the accumulation of soluble and, to a lesser extent, polymeric forms of phenolic compounds, such as lignin. This accumulation was accompanied by an increase in the phenolic compound deposition in cell walls and intercellular space and by deposition of a lignin-like material on the surface of callus cultures. The strain characterized by an increased formation of phenolic compounds was more resistant to UV-B radiation as compared to that with lower phenolic productivity.  相似文献   

2.
Plants of peanut (Arachis hypogaea L. var. PG No. 1) were given two foliar sprays of phenolic compounds (H-acid, 1, 2, 4-acid, resorcinol and RD-Brown) at 100 and 200 ppm, 35 and 50 days after sowing. In treated plants, shelling %, yield (kg/ha), number of gynophores per plant and number of pods per plant were significantly greater than in the control. Oil content of kernels also showed a significant increase with all the phenolic compounds applied. These compounds increased the linoleic acid concentration so improving nutritional quality. The number of gynophores was significantly correlated with the number of pods per plant and yield per hectare. The effect of phenolic compounds on growth and development was independent of their structural configuration.  相似文献   

3.
The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.  相似文献   

4.
Studies on exogenous application of phenolic compoundsviz: p-hydroxybenzoic acid, resorcinol and chlorogenic acid each with concentration of 10-4 M are done on the legume (Cajanus cajan (L.)Millsp.) AL-15. The effect of applied phenolic compounds as well as of structural differences in phenols indicate a marked influence of phenolic compounds in regulating growth processes in plants. Fresh and dry mass of various plant parts increased after foliar spray with phenols resulting in an improved harvest index. It is seen that phenols also play an important role in the initiation and development of nodules.  相似文献   

5.
In the present study, the Salmonella typhimurium tester strain TA 100 was used in the plate-incorporation test to examine the antimutagenic potential of caffeic, ferulic and cichoric acids extracted from plant species of genera Echinacea (L) Moench, as well as of another phenolic acids, on 3-(5-nitro-2-furyl)acrylic acid (5NFAA) and sodium azide mutagenicity. All tested compounds possess antimutagenic activity. In the case of 5NFAA, the antimutagenic potency of tested compounds was in the order of gallic acid > ferulic acid > caffeic acid > syringic acid > vanillic acid. The mutagenic effect of sodium azide was inhibited by tested phenolic acids by about 20-35 %. The most effective compound, gallic acid inhibits this effect by 82 % in the concentration of 500 mug/plate. The only exception from favourable properties of tested phenolic acids is cichoric acid, which in the contrary significantly increased the mutagenic effect of 5NFAA.  相似文献   

6.
Complete elimination of polyphenol oxidase activity in hypocotyls and leaves of developing mung bean ( Vigna radiata L. Wilczek cv. Berkin) seedlings by tentoxin had no effect on the content of the ortho-hydroxylated flavonoids delphinidin and rutin. Tentoxin completely eliminated polyphenol oxidase-mediated ortho-hydroxylation of p -coumaric acid to caffeic acid. Despite this, tentoxin had no effect on caffeic acid derivative contents in the seedlings. High performance liquid chromatography profiles indicated that elimination of polyphenol oxidase had no effect on either the quality or the quantity of soluble phenolic compounds, These data strongly indicate that polyphenol oxidase is not involved in metabolism of phenolic compounds in developing plant tissues.  相似文献   

7.
The increase in concentrations of phenolic compounds in boron (B) deficiency has been demonstrated in many herbaceous plant species, but information on woody plants is scarce. It has been suggested that accumulation of phenolic compounds plays a role in the development of cold hardiness in herbaceous plants but also that B deficiency decreases winter hardiness. Here we study the effects of B nutrition on phenolic compounds in Norway spruce (Picea abies L.) in the course of cold acclimation. Phenolic compounds were analysed in Norway spruce seedlings from three different B-fertilisation treatments in two harvests: non-acclimated and cold-acclimated seedlings. Norway spruce phenolic compounds consisted mainly of condensed tannins. During B deficiency, condensed tannins and monocoumaroyl–astragalin der. 1 increased in non-acclimated seedlings. The increase in tannins was 21%, which was nearly significant. However, the effect of B on phenolic compounds was almost absent in cold-acclimated seedlings. The condensed tannin concentration increased much more with time in the simulated autumn than due to B deficiency, and we conclude that the B effect was probably not large enough to be important for the hardening of the seedlings. The total phenolic concentrations more than doubled during the course of cold hardening suggesting that phenolics have a role in the winter hardiness in Norway spruce.  相似文献   

8.
Date palm (P. dactylifera) plays a vital role in ethnomedicinal practices in several parts of the world. There are over 2000 cultivars of date palm that differ in chemical composition and extent of bioactivity. The present study was undertaken to comparatively evaluate the antioxidant potential of three cultivars of date palm (Ajwah, Safawy and Sukkari) from Saudi Arabia and analyze their phenolic constituents in order to draw a rationale for their activity. Antioxidant activities of the date cultivars were evaluated by different quantitative methods including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assay, total antioxidant capacity, reducing power, total phenolic (TPC), flavonoid (TFC) and tannin content (TTC), while qualitative phenolic composition was determined using ultra performance liquid chromatography coupled to quadropole time of flight mass spectrometry (UPLC-QTOF-MS). All the three date extracts showed good DPPH radical scavenging (IC50 103–177 μg/mL) and hydroxyl radical scavenging (IC50 1.1–1.55 mg/mL) activity and total antioxidant capacity (IC50 87–192 μg/mL). The reducing power was also comparable to that of ascorbic acid, used as standard in above experiments. All the three samples contain significant amount of major antioxidant components (phenolic, flavonoid and tannin) that successfully correlates with the results of radical scavenging assays. UPLC-QTOF-MS revealed a total of 22 compounds in these date cultivars classified into common phenolics, flavonoids, sterols and phytoestrogens. Significant variation in the degree of antioxidant activity of these three date cultivars can be attributed to the difference in the content and composition of phenolic compounds.  相似文献   

9.
Phenolic acids act as signaling molecules in plant-microbe symbioses   总被引:3,自引:0,他引:3  
Phenolic acids are the main polyphenols made by plants. These compounds have diverse functions and are immensely important in plant-microbe interactions/symbiosis. Phenolic compounds act as signaling molecules in the initiation of legumerhizobia symbioses, establishment of arbuscular mycorrhizal symbioses and can act as agents in plant defense. Flavonoids are a diverse class of polyphenolic compounds that have received considerable attention as signaling molecules involved in plant-microbe interactions compared to the more widely distributed, simple phenolic acids; hydroxybenzoic and hydroxycinnamic acids, which are both derived from the general phenylpropanoid pathway. This review describes the well-known roles attributed to phenolic compounds as nod gene inducers of legume-rhizobia symbioses, their roles in induction of the GmGin1 gene in fungus for establishment of arbuscular mycorrhizal symbiosis, their roles in inducing vir gene expression in Agrobacterium, and their roles as defense molecules operating against soil borne pathogens that could have great implications for rhizospheric microbial ecology. Amongst plant phenolics we have a lack of knowledge concerning the roles of phenolic acids as signaling molecules beyond the relatively well-defined roles of flavonoids. This may be addressed through the use of plant mutants defective in phenolic acids biosynthesis or knock down target genes in future investigations.Key words: Agrobacterium sp., flavonoids, legume-rhizobium symbioses, phenolic acids, plant defense, vesicular arbuscular mycorrhiza  相似文献   

10.
Phenolic compounds are involved in many interactions of plants with their biotic and abiotic environment. These substances accumulate in different plant tissues and cells during ontogenesis and under the influence of various environmental stimuli, respectively. Studies on the tissue localization of phenolic compounds provide a fundamental prerequisite for understanding the ecological functions of these compounds. The present work shows the localization of various phenolics in cell walls, vacuoles, and associated with cell nuclei, in leaves of a monocotyledonous and a dicotyledonous plant, in a gymnosperm as well as in rhizomes of a horsetail by confocal laser scanning microscopy (CLSM). Using fresh plant material, it compares in detail the tissue localization of autofluorescent styrylpyrones and hydroxycinnamic acids and the visualization of epidermal flavonoid compounds using shift reagents like ammonia, and fluorescence-inducing reagents like Naturstoffreagenz A (diphenyl-boric acid 2-aminoethyl ester). The comparison of microscopic data obtained from different plant species shows the advantages and limitations of confocal laser scanning microscopy in ecological biochemistry of phenolic plant metabolites.  相似文献   

11.
Electrocoagulation is a technique basically applied in water and wastewater treatment, but which has a number of potential applications in polymer, protein, drug, and vaccine delivery. In this work, we correlate the current applied between the electrodes to the removal of phenolic compounds or protein from aqueous solutions, but the principle can also be applied to other biological compounds such as plant pigments and sugars. Simple and time‐dependent models were developed based on the complex formation between these biological substances and the aluminium hydroxide gel phase. The models developed represent a good agreement with experimental data (R2 as high as 0.992). Besides construction of the models, the effect of pH on the efficiency of removal of proteins and phenolic compounds was evaluated. It was found that this parameter has significant effect on the efficiency of the electrocoagulation and the maximal removal efficiency for bovine serum albumin and phenolic compound catechin was observed at pH 8.0. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
13.
The composition and concentrations of phenolic compounds were studied in the first true leaves, cotyledons, stems and roots of 2.5-week-old seedlings of mountain birch ( Betula pubescens ssp. czerepanovii ). The differences in secondary compounds among these plant parts were both qualitative and quantitative. In all parts, condensed tannins accounted for more than 50% of the phenolics. In the first true leaves and cotyledons, chlorogenic acid was the most abundant of the HPLC phenolics. The main components in stems were (+)-catechins and rhododendrins whereas in roots, the main components were ellagitannins. The seedlings were grown at three levels of nitrogen supply (very low-N, low-N, moderate-N), and the effect of nitrogen on concentrations of phenolic compounds was studied in all plant parts. The dry weight of all plant parts, except the roots, increased with increased nitrogen. In all parts, the concentration of condensed tannins was higher at lower levels of nitrogen than at moderate-N. The concentrations of total HPLC phenolics and also those of the compound groups of HPLC phenolics were, however, affected only in the first true leaves and roots. The concentrations in the first true leaves were generally higher in seedlings grown at very low-N and low-N than in seedlings grown at moderate-N. The concentrations in roots were highest at low-N. Not all compounds responded to nitrogen supply in the same manner. The changes in concentrations cannot be exclusively interpreted as changes in the accumulation of phenolic compounds, due to dilution caused by the increase in biomass in better nitrogen availability. There were differences in carbon allocation between condensed tannins and HPLC phenolics in seedlings grown at different nitrogen levels.  相似文献   

14.
The total content of phenolic compounds and antioxidants has been determined in medicinal plants (66 species from 31 families). Promising plant species with high antioxidant activity and maximum content of phenols have been found. Based on these data, the plants can be used as a basis for making innovative functional food products with an increased antioxidant effect.  相似文献   

15.
Summary We have assessed the relative importance of phenolic compounds, other secondary metabolites, and gross nutrient levels as feeding cues to Canada geese. Phenolic content was the most significant constituent influencing feeding selection by geese. Nutrient content had little or no effect on feeding selection.Correlative data showing the negative influence of plant phenolics on food choices by wild geese were supported by feeding preference tests. Extracts of unpalatable plants inhibited feeding by captive geese relative to extracts of palatable plants. In high phenolic plants, the phenolic containing methanol extract was more inhibitory than extractions made with petroleum ether. In a relatively low phenolic, unpalatable plant, an inhibitory factor was extractable in petroleum ether, indicating that for this species, another class of deterrents was involved. Preference tests with individual secondary metabolites showed that tannic acid and quebracho tannin were very effective in inhibiting feeding by geese and phenolic acids were slightly inhibitory, but a sesquiterpene lactone was not deterrent. These results point out the primacy of some secondary metabolites in determining food choices by geese.  相似文献   

16.
Prolonged exposure of plants to high fluxes of solar radiation as well as to other environmental stressors disturbs the balance between absorbed light energy and capacity of its photochemical utilization resulting in photoinhibition of and eventually in damage to plants. Under such circumstances, the limiting of the light absorption by the photosynthetic apparatus efficiently augments the general photoprotective mechanisms of the plant cell, such as reparation of macromolecules, elimination of reactive oxygen species, and thermal dissipation of the excessive light energy absorbed. Under stressful conditions, plants accumulate, in different cell compartments and tissue structures, pigments capable of attenuation of the radiation in the UV and visible parts of the spectrum. To the date, four principle key groups of photoprotective pigments are known: mycosporine-like amino acids, phenolic compounds (including phenolic acids, flavonols, and anthocyanins), alkaloids (betalains), and carotenoids. The accumulation of UV-absorbing compounds (mycosporine-like amino acids and phenolics in lower and higher plants, respectively) is a ubiquitous mechanism of adaptation to and protection from the damage by high fluxes of solar radiation developed by photoautotrophic organisms at the early stages of their evolution. Extrathylakoid carotenoids, betalains, and anthocyanins play an important role in long-term adaptation to the illumination conditions and in protection of plants against photodamage. A prominent feature of certain plant taxa lacking some classes of photoprotective pigments (such as anthocyanins) is their substitution by other compounds (e.g. keto-carotenoids or betalains) disparate in terms of chemical structure and subcellular localization but possessing close spectral properties.  相似文献   

17.
Foliar spray and micro-injection of plant growth-promoting rhizobacterial species, viz. Pseudomonas fluorescens and P. aeruginosa on chickpea induced synthesis of phenylalanine ammonia-lyase (PAL) when tested against Sclerotinia sclerotiorum. Induction of PAL was also associated with increased synthesis of phenolic compounds such as tannic, gallic, caffeic, chlorogenic and cinnamic acids. Treatment with P. fluorescens was found to be more effective in inducing phenolic compounds as compared to P. aeruginosa. However, persistence of PAL activity was observed more with P. aeruginosa. Although both the inoculation methods were effective, foliar application was found to be superior to micro-injection in terms of rapid PAL activity leading to the synthesis of phenolic compounds.  相似文献   

18.
This study deals with the use of peroxidases (POXs) from Allium sativum, Ipomoea batatas, Raphanus sativus and Sorghum bicolor to catalyze the degradation of free phenolic compounds as well as phenolic compounds contained in wastewater from leather industry. Secretory plant POXs were able to catalyze the oxidation of gallic acid, ferulic acid, 4-hydroxybenzoic acid, pyrogallol and 1,4-tyrosol prepared in ethanol 2% (v:v). Efficiency of peroxidase catalysis depends strongly on the chemical nature of phenolic substrates and on the botanical source of the enzymes. It appeared that POX from Raphanus sativus had the highest efficiency. Results show that POXs can also remove phenolic compounds present in industrial wastewater such as leather industry. Removal of phenolic compounds in wastewater from leather industry by POX was significantly enhanced by polyethylene glycol.  相似文献   

19.
For a selection of nine commercially available superabsorbent polymers, the absorption capacity was evaluated for the principal absorption-inhibition constituent of OMW, mineral salts and for phytotoxic-components, the phenolic compounds. A double exponential model was established for electrical conductivities ranging 4.2-25,000 microS cm(-1). For solutions of phenolic compounds ranging 0-0.5 g l(-1), a distribution coefficient near unit was achieved, while for OMW, the phenolic compounds were concentrated inside the gel as the distribution coefficient was 1.4. Correction of OMW pH towards neutrality was found to increase the absorption capacity by up to 35%. The phytotoxicity was assessed by the germination of Lepidium sativum. Inhibition in plant growth occurred for all OMW dilutions without superabsorbent polymers application. For 5% of OMW (COD 5 gl(-1) and 200 ppm of phenolic compounds) immobilised in PNa2 (1 gl(-1)), plant growth was promoted being observed a 120% growth germination, thus indicating that olive mill wastewater detoxification occurred.  相似文献   

20.
Phenolic compounds play a major role in the plant defense mechanisms and often offer protection from the feeding herbivore. They also constitute a major chemical component of many agriculturally important crops. We examined the effects of 23 common phenolic acids on the orientation and ovipositional behavior of the egg parasitoid, Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). The study was conducted in order to investigate the function of these compounds in the plant indirect defense. Parasitoids attractions towards the phenolics that are volatile in nature were observed by using culture tube bioassays. In addition in the Y- tube olfactometer experiments, T. chilonis were shown to be attracted towards the treatments of syringic, pyrocatechol, coumaric and quercetin at minimum dose of 10 μg and genistein, chlorogenic, vanillic, chlorobenzoic, sinapic, ellagic, protocatechuic, keampferol, tannic, caffeic, and luteolin at 30 μg and ferulic, epicatechin and gallic acid at 50 μg doses. Further experiments to examine the effect of phenolic compounds on parasitization by T. chilonis females were carried out using petri dish and artificial plant models. Among the tested compounds, syringic acid and quercetin recorded the highest percentage parasitization followed by coumaric acid and pyrocatechol. These results might imply that parasitoid attractant phenolic compounds when induced in engineered plants can further be used as cues by the egg parasitoids with potential application in biocontrol strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号