首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proton motive force is not obligatory for growth of Escherichia coli.   总被引:13,自引:6,他引:7       下载免费PDF全文
When 50 microM carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), a protonophore, was added to growth medium containing glucose at pH 7.5, Escherichia coli TK1001 (trkD1 kdpABC5) started exponential growth after 30 min; the generation time was 70 min at 37 degrees C. Strain AS1 (acrA), another strain derived from E. coli K-12, also grew in the presence of 50 microM CCCP under the same conditions, except that the lag period was ca. 3 h. When this strain was grown in the presence of 50 microM CCCP and then transferred to fresh medium containing 50 microM CCCP, cells grew without any lag. Neither a membrane potential nor a pH gradient was detected in strain AS1 cells growing in the presence of CCCP. When either succinate or lactate was substituted for glucose, these strains did not grow in the presence of 50 microM CCCP. Thus, it is suggested that E. coli can grow in the absence of a proton motive force when glucose is used as an energy source at pH 7.5.  相似文献   

2.
Two mutant strains of Escherichia coli K 12 Doc-S resistant to the uncoupling agents 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole and carbonyl cyanide m-chlorophenylhydrazone were isolated. These strains, designated TUV and CUV, were capable of (a) growth, (b) the transport of succinate and L-proline and (c) electron-transport-linked oxidative synthesis of ATP in the presence of titres of uncoupler which inhibited these processes in strain Doc-S. The inhibition of transport of L-proline by a fixed titre of uncoupler was sharply pH dependent in strain Doc-S: uptake was unaffected at pH 7.6 but completely inhibited at pH 5.6. This pH dependence was not shown by the resistant strains. We believe that uncouplers were equally accessible to their site(s) of action in the energy-conserving membrane of the sensitive and resistant strains. We conclude that uncoupler resistance in these strains of E. coli has arisen as a consequence of mutations which directly affect a specific site of uncoupler action within the cytoplasmic membrane, rather than as a consequence of a decrease in the permeability of cells to uncoupler.  相似文献   

3.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

4.
Active transport of inorganic phosphate into whole cells of a strain (AB3311) derived from Escherichia coli K12 was found to be partially resistant to 50 μM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a powerful uncoupler of oxidative phosphorylation. The presence of 10 mM dithiothreitol (DTT) before the addition of CCCP completely prevented the inhibition of phosphate uptake caused by the uncoupler. The addition of DTT to the CCCP-inhibited system restored phosphate uptake to the control rate even when added 5 min after the phosphate transport assay was started. This uncoupler resistant transport is insensitive to anaerobiosis, or the addition of 10 mM KCN which reduces oxygen consumption to less than 1% that of aerobic controls. Additional studies of transport in a mutant (CBT302) deficient in membranebound Ca2+-, Mg2+-ATPase activity also demonstrated the retention of appreciable inorganic phosphate uptake under anaerobic conditions.  相似文献   

5.
Uncoupler resistance in Escherichia coli: the role of cellular respiration   总被引:2,自引:0,他引:2  
Bioenergetic properties of a mutant strain of Escherichia coli K12 designated TUV, which is resistant to the protonophoric uncoupling agent 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidiazole (TTFB) have been compared with those of its non-resistant parent, E. coli K12 Doc-S. Strain TUV grew and respired some 20-30% faster than strain Doc-S, and was cross-resistant to carbonylcyanide p-(trifluoromethoxy)phenylhydrazone and triphenyltin, but not to 2,4-dinitrophenol. Phosphorus nuclear magnetic resonance demonstrated the TTFB-mediated collapse of the transmembrane pH gradient at identical rates in starved cells of both strains, indicating that uncoupler access and function were unimpaired in the mutant under these conditions. Strain TUV displayed enhanced uncoupler resistance and maintained intracellular pH and ATP levels only when respiring. On the other hand, strain TUV also showed increased resistance to novobiocin, implying that its outer wall permeability had been lowered. We suggest that the active resistance of strain TUV results from the exclusion of uncoupler by the interaction of inner and outer membrane components in a manner modulated by the degree of cellular energization.  相似文献   

6.
Nickel transport in Methanobacterium bryantii.   总被引:10,自引:4,他引:6       下载免费PDF全文
Methanobacterium bryantii, grown autotrophically on H2-CO2, transported nickel against a concentration gradient by a high-affinity system (Km = 3.1 microM). The system had a pH optimum of 4.9 and a temperature optimum of 49 degrees C with an energy of activation of 7.8 kcal/mol (ca. 32.6 kJ/mol). A headspace of H2-CO2 (4:1, vol/vol) was required for maximum rate of transport. The system was highly specific for nickel and was unaffected by high levels of all monovalent and divalent ions tested (including Mg2+) with the sole exception of Co2+. Kinetic experiments indicated that accumulated nickel became increasingly incorporated into cofactor F430 and protein. Nickel transport was inhibited by nigericin, monensin, and gramicidin but not by carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone, carbonyl cyanide-m-chlorophenyl hydrazone, N,N'-dicyclohexylcarbodiimide, valinomycin plus potassium, or acetylene. The ineffectiveness of carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone, carbonyl cyanide-m-chlorophenyl hydrazone, and N,N'-dicyclohexylcarbodiimide may be related to difficulties in the penetration of these compounds through the outer cell barriers. Nickel uptake was greatly stimulated by an artificially imposed pH gradient (inside alkaline). The data suggest that nickel transport is not dependent on the membrane potential or on intracellular ATP, but is coupled to proton movement.  相似文献   

7.
In an attempt to more closely define a protein basis of differences in ATPase and ATP synthase activities in a mutant of the methanoarchaeon Methanothermobacter thermautotrophicus resistant to the protonophoric uncoupler TCS (3,3',4',5-tetrachlorosalicylanilide), the composition of membrane associated proteins from the wild-type and mutant strains has been compared. The uncoupler-resistance in the mutant strain was not accompanied by changes in a protein size or changes in the level of subunits A, B and c (proteolipid) of the A1A0-type ATPase-synthase. On the other hand, we revealed a 670-kDa membrane-associated protein complex that is abundantly present only in the mutant strain; it is composed of at least 5 different subunits of 95, 52, 42, 29 and 22 kDa.  相似文献   

8.
A wild-type Agrobacterium tumefaciens strain CNI5 isolated from crown gall of chrysanthemum (Dendranthema grandiflora Tzvelev) was characterized. Strain CNI5 was classified into biovar 1, based on physiological and biochemical characteristics, and was resistant to ampicillin. Strain CNI5 induced tumors at a higher frequency and on a larger area of explants in most tested plant species, especially in chrysanthemum cultivars, than the octopine-type strain C58C1cmr (pTiB6S3). Agropine and mannopine were detected in tumors induced by strain CNI5 and were specifically catabolized by this strain. Strain CNI5 harbored five plasmids including one plasmid that shared sequence similarity to TL-DNA of the octopine-type Ti plasmid and four cryptic plasmids.  相似文献   

9.
Previous studies have shown that mutations in the unc gene of Escherichia coli K12 cause defects in energy transduction as well as a membrane-bound (Mg2+, Ca2+)-adenosine triphosphatase. We studied the effect of this mutation on the "downhill" efflux of methyl-beta-D-galactopyranoside, a suboli K12 did not show significant differences in substrate influx of efflux, a differential effect of an uncoupler, 2,4-dinitrophenol was demonstrated. In contrast to the unc+, dinitrophenol failed to inhibit significantly the rate coefficient of efflux in the unc- strain. Analysis of spontaneous unc+ revertants of the unc- mutant provided additional evidence that a functional unc gene is necessary for dinitrophenol inhibition of efflux. Other uncouplers tested in the unc+ strain showed different effects on efflux. While arsenate, azide and carbonyl cyanide p-trifluoromethoxyphenulhydrazone caused little or no effect, 2,4-dibromophenol and pentachlorophenol increased efflux by a considerable factor.  相似文献   

10.
A spontaneous mutant of Methanothermobacter thermautotrophicus resistant to the Na+/H+ antiporter inhibitor amiloride was isolated. The Na+/H+ exchanger activity in the mutant cells was remarkably decreased in comparison with wild-type cells. Methanogenesis rates in the mutant strain were higher than wild-type cells and resistant to the inhibitory effect of 2 mM amiloride. In contrast, methanogenesis in wild-type cells was completely inhibited by the same amiloride concentration. ATP synthesis driven by methanogenic electron transport or by an electrogenic potassium efflux in the presence of sodium ions was significantly enhanced in the mutant cells. ATP synthesis driven by potassium diffusion potential was profoundly inhibited in wild-type cells by the presence of uncoupler 3,3',4',5- tetrachlorosalicylanilide and sodium ions, whereas c. 50% inhibition was observed in the mutant cells under the same conditions.  相似文献   

11.
Mutants of Bacillus megaterium displaying malate-stimulated ATP synthesis resistant to uncouplers of oxidative phosphorylation were isolated and partially characterized. ATP synthesis in such mutants was resistant to carbonyl cyanide m-chlorophenyl hydrazone as well as to other uncouplers including 2,4-dinitrophenol, pentachlorophenol, and sodium azide. ATP synthesis in the wild type and in resistant mutants was sensitive to N,N'-dicyclohexylcarbodiimide, tributyltin, valinomycin plus potassium, and potassium cyanide. Active transport of glycine and glutamine which are sensitive to uncouplers in the wild type was also uncoupler-sensitive in the mutants.  相似文献   

12.
The growth of Vibrio alginolyticus and V. costicola, which possess respiration-dependent Na+ pumps, was highly resistant to the proton conductor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), in alkaline growth media, even though the membrane was rendered permeable to H+. The pH dependence of CCCP-resistant growth was similar to that of the Na+ pump. In contrast, Escherichia coli ML308-225 showed neither Na+ pump activity nor CCCP-resistant growth, even when grown in alkaline, Na+-rich media. These results suggest that certain bacteria possess the Na+ pump and are thus able to grow under the conditions where H+ circulation across the membrane does not take place. Moreover, V. alginolyticus growing in the presence of CCCP maintains normal levels of internal K+, Na+, and H+. The Na+ pump, therefore, makes the growth of these organisms resistant to CCCP by maintaining the intracellular cation environments.  相似文献   

13.
[(The over-usage of antibiotics may result in the develop-)]ment of extensive antibiotic resistance in microorganisms[1]. Export of toxic compounds as means of resistancehas been well documented in pathogenic bacteria as wellas antibiotic-producing microorganisms [2,3]. Drugresistance efflux proteins comprise the primary efflux[(system, namely the )58.3(A)106.2(TP-binding cassette \(ABC\) family)][(transporters ener)10.9(gized by )68.1(A)104.5(T)0.8(P)113.8(,)-0.1( and the secondary active)…  相似文献   

14.
The twin-arginine translocase (Tat) system is used by many bacteria to translocate folded proteins across the cytoplasmic membrane. The TatA subunit is the predicted pore-forming subunit and has been shown to form a homo-oligomeric complex. Through accessibility experiments using the thiol-reactive reagents 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and Nalpha-(3-maleimidylproprionyl)biocytin toward site-specific cysteine mutants in TatA, we show that the N-terminus of TatA is located in the cytoplasm rather than the previously assumed periplasm. We also confirm previous observations that the C-terminus has a dual topology. By treatment with the membrane uncoupler carbonyl cyanide-m-chlorophenyl hydrazone, we show that the topological state of the C-terminus is dependent on the membrane potential. These results suggest two architectures of TatA in the membrane: one with a single transmembrane helix and the other with two transmembrane helices. Molecular models of both topologies were used to develop and cartoon a homo-oligomeric complex as a channel with a diameter of approximately 50 A and suggest that the double transmembrane helix topology might be the building block for the translocation channel. Additionally, in vivo cross-linking experiments of Gly2Cys and Thr22Cys mutants showed that Gly2, at the beginning of transmembrane helix-1, is in close proximity with Gly2 of a neighboring TatA, as Cys2 cross-linked immediately upon the addition of copper phenanthroline. On the other hand, Cys22, at the other end of the transmembrane helix, took at least 10 min to cross-link, suggesting that a possible movement or reorientation is required to bring this residue into proximity with a neighboring TatA subunit.  相似文献   

15.
The synthesis and assembly of subunit VII, the Q-binding protein of the cytochrome b-c1 complex, into the inner mitochondrial membrane has been compared in wild-type yeast cells and in a mutant cell line lacking cytochrome b. Both immunoblotting and immunoprecipitation analysis with specific antiserum against subunit VII indicated that this subunit is not detectable in the mutant as compared to the wild-type mitochondria. However, labeling in vivo of the cytochrome b deficient yeast cells in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone clearly demonstrated that subunit VII was synthesized in the mutant cells to the same extent as in the wild-type cells. Incubation of subunit VII, synthesized in vitro in a reticulocyte lysate programmed with yeast RNA, with mitochondria isolated from both wild-type and cytochrome b deficient yeast cells revealed that the subunit VII was transported into the wild-type mitochondria into a compartment where it was resistant to digestion by exogenous proteinase K. By contrast, subunit VII was bound in lowered amounts to the cytochrome b deficient mitochondria where it remained sensitive to digestion by exogenous proteinase K, suggesting that the import of subunit VII may be impaired due to the lack of cytochrome b. Furthermore, subunit VII was synthesized both in vivo and in vitro with the same molecular mass as the mature form of this protein.  相似文献   

16.
17.
Strain SF22, a glutamine-requiring (Gln-) mutant of Bacillus subtilis SMY, is likely to have a mutation in the structural gene for glutamine synthetase, since this strain synthesized 22 to 55% as much glutamine synthetase antigen as did wild-type cells in a 10-min period but had less than 3% of wild-type glutamine synthetase enzymatic activity. The expression of several genes subject to glucose catabolite repression was altered in the Gln- mutant. The induced levels of alpha-glucosidase, histidase, and aconitase were 3.5- to 4-fold higher in SF22 cells than in wild-type cells grown in glucose-glutamine medium, and citrate synthase levels were 8-fold higher in the Gln- mutant than in wild-type cells. The relief of glucose catabolite repression in the Gln- mutant may result from poor utilization of glucose. Examination of the intracellular metabolite pools of cells grown in glucose-glutamine medium showed that the glucose-6-phosphate pool was 2.5-fold lower, the pyruvate pool was 4-fold lower, and the 2-ketoglutarate pool was 2.5-fold lower in the Gln- cells than they were in wild-type cells. Intracellular levels of glutamine were sixfold higher in the Gln- mutant than in wild-type cells. Measurements of enzymes involved in glutamine transport and utilization showed that the elevated pools of glutamine in the Gln- mutant resulted from a threefold increase in glutamine permease and a fivefold decrease in glutamate synthase. The pleiotropic effect of the gln-22 mutation on the expression of several genes suggests that either the glutamine synthetase protein or its enzymatic product, glutamine, is involved in the regulation of several metabolic pathways in B. subtilis.  相似文献   

18.
Mutants of Methanosarcina barkeri 227 resistant to monofluoroacetate were isolated from monofluoroacetate-treated cultures. Mutant strain FAr9 was 100 times more resistant to monofluoroacetate than the wild-type strain and was deficient in carbon uptake and CH4 and CO2 production from methyl-labeled acetate. Methanol was assimilated at increased levels. Strain FAr9 was unable to shift from using methanol to using acetate for growth and exhibited increased sensitivity to growth inhibition by NaCN in methanol-containing complex medium. Unlike parent strain 227, acetate addition to methanol-containing media did not prevent NaCN inhibition. The specific activities of enzymes of exogenous acetate assimilation, CO dehydrogenase, and enzymes of the tricarboxylic acid cycle were similar for mutant and parent strain cell extracts. Mutation to monofluoroacetate resistance did not confer simultaneous resistance to 2-bromoethanesulfonate or pyruvate or alter propionate uptake. We conclude that strain FAr9 is either an acetate permeability mutant or is defective in an activation step required for the catabolism and anabolism of acetate.  相似文献   

19.
Various Escherichia coli mutant strains designed for succinate production under aerobic conditions were characterized in chemostat. The metabolite profiles, enzyme activities, and gene expression profiles were studied to better understand the metabolic network operating in these mutant strains. The most efficient succinate producing mutant strain HL27659k was able to achieve a succinate yield of 0.91 mol/mol glucose at a dilution rate of 0.1/h. This strain has the five following mutations: sdhAB, (ackA-pta), poxB, iclR, and ptsG. Four other strains involved in this study were HL2765k, HL276k, HL2761k, and HL51276k. Strain HL2765k has mutations in sdhAB, (ackA-pta), poxB and iclR, strain HL276k has mutations in sdhAB, (ackA-pta) and poxB, strain HL2761k has mutations in sdhAB, (ackA-pta), poxB and icd, and strain HL51276k has mutations in iclR, icd, sdhAB, (ackA-pta) and poxB. Enzyme activity data showed strain HL27659k has substantially higher citrate synthase and malate dehydrogenase activities than the other four strains. The data also showed that only iclR mutation strains exhibited isocitrate lyase and malate synthase activities. Gene expression profiles also complemented the studies of enzyme activity and metabolites from chemostat cultures. The results showed that the succinate synthesis pathways engineered in strain HL27659k were highly efficient, yielding succinate as the only major product produced under aerobic conditions. Strain HL27659k was the only strain without pyruvate accumulation, and its acetate production was the least among all the mutant strains examined.  相似文献   

20.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号