首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of adenylyl cyclases from Bacillus anthrasis and Bordetella pertussis by polyadenylate and by the most potent "P"-site agonists was investigated. These bacterial adenylyl cyclases differed in their sensitivity to inhibition by nominal "P"-site agents and in the effect of divalent cations on this inhibition. The enzyme from Bordetella pertussis was relatively insensitive to inhibition by "P"-site agonists, exhibiting a rank order of potency of 2'd3'AMP greater than 3'-AMP greater than 2',5'-ddAdo approximately Ado approximately 2'-dAdo, with IC50 values for 2'd3'AMP and 3'-AMP of 1-3 mM. Inhibition by 2'd3'AMP, however, was not affected by divalent cation, making it distinct from "P"-site-mediated inhibition of most mammalian adenylyl cyclases. The sensitivity to these nucleosides was comparable with potency for inhibition of bovine sperm adenylyl cyclase but was 3 orders of magnitude less potent than for activated enzyme from bovine or rat brain. The Bordetella pertussis enzyme was similarly insensitive to inhibition by polyadenylate, with 16 microM inhibiting less than 20%. By comparison, Bacillus anthrasis adenylyl cyclase was more potently inhibited by 2'd3'AMP (IC50 approximately 85 microM) but not by the other nucleosides (less than 15% inhibition at 1 mM), and inhibition by 2'd3'AMP was optimally enhanced by 5-10 mM Mg2+ or Mn2+, as is typical for inhibition by "P"-site agonists. The Bacillus anthrasis enzyme was potently inhibited by polyadenylate (IC50 approximately 0.3 microM), comparable to inhibition of brain adenylyl cyclases. Sensitivity of Bacillus anthrasis adenylyl cyclase to poly(A) was diminished somewhat by Ca2+/calmodulin (to IC50 approximately 1 microM) although Ca2+/calmodulin was without effect on inhibition by 2'd3'AMP. In contrast to inhibition of mammalian adenylyl cyclases via the "P"-site, inhibition of both bacterial adenylyl cyclases by 2'd3'AMP was competitive with respect to substrate MgATP. The data indicate basic differences in susceptibilities of these bacterial adenylyl cyclases to inhibition by poly(A), by adenosine analogs, and the effects of divalent cations. Although the potency of 2'd3'AMP and the metal-dependent nature of inhibition of Bacillus anthrasis adenylyl cyclase shared characteristics of "P"-site-mediated inhibition, the fact that inhibition of both bacterial adenylyl cyclases was competitive with respect to substrate strongly suggests that this inhibition was at the catalytic site and that these bacterial enzymes do not contain a distinct "P"-site.  相似文献   

2.
A membrane fraction enriched in parathyroid hormone (PTH)-sensitive adenylate cyclase and sodium and potassium ion-activated (Na+, K+)-ATPase was prepared from bovine kidney. Tritiated PTH binding to this membrane fraction was dependent on both hormone and membrane protein concentration. Both total and specific binding of the hormone decreased significantly after 5 to 10 min of incubation at 22 degrees. PTH binding was highly specific, being sensitive to inhibition only with active forms of unlabeled hormone (native and 1-34 PTH). Specific binding showed a pH optimum of 7.3 to 7.5. Inhibition of binding of tritiated hormone by unlabeled PTH was also highly effective at pH 6.0, but this apparently specific binding was also inhibited by adrenocorticotropic hormone, insulin, glucagon, and vasopressin. Dissociation of bound hormone was demonstrated, and an apparent dissociation constant of 4.6 X 10(-2) min-1 was obtained. Specific binding was eliminated by pretreatment of the membranes with trypsin. The concentration dependence for inhibition of binding with unlabeled PTH was identical to that for activation of adenylate cyclase in this membrane preparation, and binding was also inhibited by concentrations of calcium in the 0.5 to 2 mM range.  相似文献   

3.
Adenosine inhibits ram sperm adenylate cyclase activity which is membrane-bound and comprises only the catalytic subunit. The inhibition parameters of adenylate cyclase by adenosine were not modified when the enzyme was purified 3 to 5,000 fold. Optimal inhibition by adenosine was found to require a high concentration of manganese, and exhibited a noncompetitive pattern up to a concentration of 1 mM adenosine. Adenosine was the most potent inhibitor among various analogs tested with the following rank order of potencies: adenosine greater than 2'O-methyladenosine greater than 2'deoxyadenosine much greater than 2 chloroadenosine. Studies with agonists and antagonists of the "R"-type adenosine receptor led us to conclude that adenosine inhibits ram sperm adenylate cyclase via a "P"-site carried by the catalytic subunit itself.  相似文献   

4.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

5.
Adenylate cyclase activity in Xenopus oocyte membranes measured in the presence of guanyl-5'-yl imidodiphosphate and 1.5 mM Mn2+ was maximally inhibited to 57% of control by progesterone and to 89% by the P site agonists, 2',5'-dideoxyadenosine and 9-beta-d-arabinofuranosyladenine. Inhibition by saturating concentrations of 2',5'-dideoxyadenosine and progesterone was not additive, suggesting that inhibition of oocyte adenylate cyclase by progesterone may share a common mechanism with P site inhibition. Kinetic analysis of the effect of progesterone and 2',5'-dideoxyadenosine on the hysteretic activation of adenylate cyclase by guanyl-5'-yl imidodiphosphate indicates that both hormones exert their effects, at least in part, by lengthening the lag in cAMP formation, and this hysteretic effect is inversely proportional to the concentration of guanine nucleotide in the incubation mixture. Direct measurement of [3H] guanine nucleotide release from oocyte membranes preloaded with [3H] GTP demonstrated that treatment with either progesterone or 2',5'-dideoxyadenosine slows the rate of nucleotide exchange. Inhibition of oocyte adenylate cyclase by 2',5'-dideoxyadenosine was potentiated by millimolar concentrations of Mn2+, but inhibition by progesterone was abolished. The results indicate that inhibition of Xenopus oocyte adenylate cyclase by progesterone has features in common with both P site and receptor-mediated inhibitory mechanisms.  相似文献   

6.
Alpha-adrenergic inhibition of renal cortical adenylate cyclase   总被引:1,自引:0,他引:1  
Adenylate cyclase in homogenates of rat renal cortex was inhibited by alpha-adrenergic agonists. Inhibition required sodium ion and GTP. A maximum inhibition of 17.8 +/- 1.4% (S.E.M.) was produced by l-epinephrine in the presence of 0.2 M NaCl, 10 microM GTP and 10 microM propranolol. Similar inhibition was produced by l-norepinephrine and alpha-methylnorepinephrine. The EC50 values for l-epinephrine, l-norepinephrine and alpha-methylnorepinephrine were respectively 1.9 +/- 0.7 microM, 2.3 +/- 1.6 microM and 5.1 +/- 1.8 microM. Clonidine was a partial agonist causing 50% as much inhibition as epinephrine. Phenylephrine and methoxamine did not inhibit at concentrations up to 100 microM. Micromolar concentrations of phentolamine and yohimbine prevented the inhibition of adenylate cyclase by epinephrine. However, prazosin was ineffective. Thus the adenylate cyclase coupled alpha-receptors have alpha-2 specificity. Inhibition of adenylate cyclase by alpha-adrenergic agonists was not observed in homogenates of renal medulla.  相似文献   

7.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

8.
The effects of chlofibrate on the adenylate cyclase system of human adipocytes were studied. Clofibrate reduced basal as well as hormone-NaF)stimulated adenylate cyclase activities to about the same extent (45% inhibition at 1 mg/ml clofibrate). The relative extent of hormonal stimulation was not altered by this compound. The inhibitory action of clofibrate was non-competitive with respect to the substrate ATP and cofactors (Mg2+-ions). Inhibition of enzyme activity was detectable after 2.5 min. Our results suggest that the antilipolytic activity of clofibrate is mediated via inhibition of the catalytic subunit of the fat cell adenylate cyclase.  相似文献   

9.
Cholera toxin is known to inhibit lymphocyte activation in vitro, an effect attributed to its ability to activate adenylate cyclase and increase intracellular cyclic adenosine monophosphate. In these studies the effects of both cholera toxin (CT) and its purified binding subunit (CT-B) on lymphocyte proliferation in vitro was examined, using a variety of cell activators. We found that both CT and CT-B inhibited mitogen- and antigen-induced T cell proliferation and anti-IgM-induced B cell proliferation in a dose-dependent manner. However, only CT-inhibited lipopolysaccharide-induced B cell proliferation. Neither CT nor CT-B inhibited antigen uptake and presentation by macrophages. The CT-B preparation used was shown not to activate lymphocyte adenylate cyclase, although CT itself was a strong activator of this enzyme. Both molecules had to bind to the lymphocyte surface in order to inhibit. The time course of inhibition of both CT and CT-B was similar in that either could be added up to 24 hr after culture initiation and still inhibit substantially. The addition of excess human recombinant interleukin 2 to the cultures did not affect the inhibition by CT, and had only a partial affect on inhibition by CT-B. Similarly, CT was able to substantially inhibit recombinant interleukin 2-dependent T lymphoblast proliferation, whereas CT-B had only a small inhibitory effect. Inhibition was not major histocompatibility complex-restricted. We conclude that the binding of CT or CT-B to the lymphocyte surface membrane interferes in some way with the activation mechanism leading to proliferation. The inhibition mediated by CT-B does not involve the stimulation of intracellular adenylate cyclase. CT appears to inhibit both by binding via its B subunit and by activation of adenylate cyclase via its A subunit.  相似文献   

10.
We studied the consequences of infection of L6E9 myoblasts with T. cruzi on the adenylate cyclase complex to test the hypothesis that infection alters the functional properties of the guanine nucleotide regulatory proteins, Ns and Ni. Stimulating activities of adenylate cyclase due to isoproterenol, isoproterenol plus Gpp(NH)p, or forskolin (activities mediated by Ns) are not altered by infection. However, inhibitory activities mediated by Ni [Gpp(NH)p, acetylcholine, and adenosine inhibition of forskolin-dependent adenylate cyclase activity] are compromised by infection. The reduction in adenosine's inhibition of forskolin-dependent adenylate cyclase activity is seen throughout the effective concentration range of adenosine. Pertussis toxin does not change basal or stimulated adenylate cyclase activity in infected cells compared with normal uninfected cells, nor does it alter the inhibiting action of adenosine. To evaluate the coupling proteins (Ns and Ni) involved in the stimulation and inhibition of adenylate cyclase more directly, cholera- and pertussis-toxin-dependent ADP ribosylation studies were performed. The incorporation of [32P]ADP ribose in the presence (specific) or absence (nonspecific) of the toxins was markedly decreased in membranes prepared from infected cells. However, in membranes prepared from infected or uninfected cells previously treated with pertussis toxin, there was a significant reduction in specific pertussis-toxin dependent ADP ribosylation. The infection-associated diminution in toxin-dependent ADP ribosylation complements the impaired inhibition of adenylate cyclase data. Collectively, the data further substantiate an infection-associated alteration in the adenylate cyclase complex, probably at the level of the guanine nucleotide binding proteins.  相似文献   

11.
The nonspecific lipid transfer protein from beef liver was used to modify the phospholipid composition of intact turkey erythrocytes in order to study the dependence of isoproterenol-stimulated adenylate cyclase activity on membrane phospholipid composition. Incorporation of phosphatidylinositol into turkey erythrocytes inhibited isoproterenol-stimulated cyclic AMP accumulation in a linear, concentration-dependent manner. Inhibition was relatively specific for phosphatidylinositol; phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid were from 3 to 7 times less effective as inhibitors of hormone-stimulated cyclase activity. Inhibition by phosphatidylinositol was not reversible when up to 90% of the incorporated phosphatidylinositol was removed, either by incubation with phosphatidylinositol-specific phospholipase C or a second incubation with transfer protein; possibly adenylate cyclase activity depends on a small pool of phosphatidylinositol that is inaccessible to either phospholipase C hydrolysis or removal by lipid transfer protein. Phosphatidylinositol incorporation inhibits adenylate cyclase activity by uncoupling beta-adrenergic receptors from the remainder of the cyclase complex. Phosphatidylinositol incorporation had no effect on stimulation of cAMP accumulation by either cholera toxin or forskolin, indicating that inhibition occurs only at the level of receptor. Phosphodiesterase activity was not altered in phosphatidylinositol-modified cells. Inhibition of cAMP accumulation was not the result of changes in either membrane fluidity or in cAMP transport out of modified turkey erythrocytes. Phosphatidylinositol inhibition of isoproterenol-stimulated cyclase activity may serve as a useful model system for hormone-induced desensitization.  相似文献   

12.
The effect of the haem precursor 5-aminolevulinic acid (ALA) on the production of cyclic adenosine-monophosphate (cAMP) by rat cerebellar membranes was investigated. It was found that ALA dose-dependently decreased cAMP levels (maximal inhibition of 38%, at 1 mM), due to an inhibition of basal adenylate cyclase activity. ALA also inhibited fluoride- and Gpp(NH)p-stimulated, but not the forskolin-stimulated adenylate cyclase activity. 5-Aminovaleric acid (an inhibitor of GABA(B) receptors) did not prevent the inhibition, indicating that it was not mediated by the activation of the G(i)-protein coupled GABA(B) receptor. In addition, the nucleotide binding site of G-protein appeared not to be affected by ALA since it did not inhibit [3H]Gpp(NH)p binding to our membrane preparation. Antioxidants (glutathione, ascorbate and trolox) completely prevented the inhibition indicating that ALA effect was mediated by an oxidative damage of adenylate cyclase. ALA also inhibited the activity of adenylate cyclase in membranes isolated from rat cortex and striatum and from human cortex. These results may be of value in understanding the neurochemical mechanisms underlying the neurotoxic effects of ALA.  相似文献   

13.
Bordetella pertussis and the other Bordetella species produce a novel adenylate cyclase toxin which enters target cells to catalyze the production of supraphysiologic levels of intracellular cyclic adenosine monophosphate (cAMP). In these studies, dialyzed extracts from B. pertussis containing the adenylate cyclase toxin, a partially purified preparation of adenylate cyclase toxin, and extracts from transposon Tn5 mutants of B. pertussis lacking the adenylate cyclase toxin, were used to assess the effects of adenylate cyclase toxin on human peripheral blood monocyte activities. Luminol-enhanced chemiluminescence of monocytes stimulated with opsonized zymosan was inhibited greater than 96% by exposure to adenylate cyclase toxin-containing extract, but not by extracts from adenylate cyclase toxin-deficient mutants. The chemiluminescence responses to particulate (opsonized zymosan, Leishmania donovani, and Staphylococcus aureus) and soluble (phorbol myristate acetate) stimuli were inhibited equivalently. The superoxide anion generation elicited by opsonized zymosan was inhibited 92% whereas that produced by phorbol myristate acetate was inhibited only 32% by B. pertussis extract. Inhibition of oxidative activity was associated with a greater than 500-fold increase in monocyte cAMP levels, but treated monocytes remained viable as assessed by their ability to exclude trypan blue and continued to ingest particulate stimuli. The major role of the adenylate cyclase toxin in the inhibition of monocyte oxidative responses was demonstrated by: 1) little or no inhibition by extracts from B. pertussis mutants lacking adenylate cyclase toxin; 2) high level inhibition with extract from B. parapertussis, a related species lacking pertussis toxin; and 3) a reciprocal relationship between monocyte cAMP levels and inhibition of opsonized zymosan-induced chemiluminescence using both crude extract and partially purified adenylate cyclase toxin. Pertussis toxin, which has been shown to inhibit phagocyte responses to some stimuli by a cAMP-independent mechanism, had only a small (less than 20%) inhibitory effect when added at concentrations up to 100-fold in excess of those present in B. pertussis extract. These data provide strong support for the hypothesis that B. pertussis adenylate cyclase toxin can increase cAMP levels in monocytes without compromising target cell viability or impairing ingestion of particles and that the resultant accumulated cAMP is responsible for the inhibition of oxidative responses to a variety of stimuli.  相似文献   

14.
The relationship between Fc receptor specific for IgG2b (Fc gamma 2bR) and membrane adenylate cyclase was investigated. The specific binding of IgG2b immune complexes to P388D1 cell surface Fc gamma 2bR was found to inhibit the basal, forskolin-stimulated, and NaF-stimulated activities of membrane adenylate cyclase by 53%, 57%, and 31%, respectively. On the other hand, the binding of IgG2a immune complexes to cell surface Fc gamma 2aR increased the basal activity about 2.5-fold and the forskolin- and NaF-stimulated activities slightly. The fusion of liposomes containing Fc gamma 2bR, which was obtained as phosphatidylcholine (PC) binding protein as previously described, with the cyc- membrane preparations resulted in the marked suppression of membrane adenylate cyclase, whereas the fusion of liposomes containing Fc gamma 2a, which was obtained as IgG-binding protein, led to about a 2.7-fold increase. The Fc gamma 2bR-mediated inhibition of adenylate cyclase may be due to the temporary change of the lipid environment caused by the action of phospholipase A2, which was previously shown to be associated with Fc gamma 2bR, since (1) addition of snake venom phospholipase A2 or cholate-solubilized PC-binding protein to P388D1 membrane was found to inhibit adenylate cyclase in a dose-dependent manner, (2) prior treatment of snake venom phospholipase A2 or PC-binding protein with a specific inhibitor, p-bromophenacyl bromide, significantly reduced their inhibitory action, and (3) a product of phospholipase A2 action, arachidonic acid, was found to be an effective inhibitor of membrane adenylate cyclase, whereas the other product, lysophosphatidylcholine, was much less inhibitory than arachidonic acid. Arachidonic acid appeared to interfere with the functions of both guanine nucleotide-binding stimulatory (Gs) protein and the catalytic subunit of adenylate cyclase, since exogenously added arachidonic acid significantly suppressed the GTPase activity of P388D1 membrane and the forskolin response of the adenylate cyclase activity of Gs protein deficient cyc- membrane. The primary site of action of lysophosphatidylcholine is not clear but may be other than Gs protein and/or the catalytic subunit, since it did not change either GTPase activity of P388D1 membrane or the response to forskolin of adenylate cyclase of cyc- membrane. The Fc gamma 2bR/phospholipase A2 mediated inhibition of adenylate cyclase would be a transient event in viable cells, since phospholipase A2 did not inhibit adenylate cyclase in the presence of microsomal fraction, mitochondria, and coenzyme A, suggesting the occurrence of rapid acylation of CoA and reacylation of lysolecithin.  相似文献   

15.
The adenylate cyclase coupled inhibitory nucleotide regulatory protein (Ni) and the bovine retinal nucleotide regulatory protein transducin (T) appear to share some common functional properties since their GTPase activity is stimulated to similar extents by the retinal photoreceptor rhodopsin. In the present work, we sought to assess whether these functional similarities might extend to their interaction with adenylate cyclase. This necessitated the development of reconstitution systems in which guanine nucleotide regulatory protein mediated inhibition of adenylate cyclase activity could be demonstrated and characterized in a lipid milieu. In the absence of the pure human erythrocyte stimulatory nucleotide regulatory protein (Ns), the insertion into phospholipid vesicles of either pure Ni from human erythrocytes or pure bovine T with the resolved catalytic moiety of bovine caudate adenylate cyclase (C) does not establish GppNHp inhibition of either Mg2+- or forskolin-stimulated adenylate cyclase. However, the coinsertion into lipid vesicles of either Ni or T with Ns and resolved C results in an inhibition of Ns(GppNHp) stimulatable C activity. As is the case in intact membranes, the reconstituted inhibition of the Ns-stimulated C activity extends into the steady-state phase of time courses of activity. This inhibition is highly sensitive to the MgCl2 concentration. At 2 mM MgCl2, the inhibition is greater than 80% while at 50 mM MgCl2 it is only approximately 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

17.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

18.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

19.
Follicular fluid obtained from medium or large bovine ovarian follicles inhibited ovarian luteinizing hormone/human chorionic gonadotropin sensitive adenylate cyclase in a dose-dependent manner (I50 = 3 mg follicular fluid protein/ml). The inhibitory activity was excluded by Sephadex G-10 and was fully retained following treatment with charcoal. Fluoride-stimulated enzyme activity was not inhibited. Binding of 125I human chorionic gonadotropin to ovarian plasma membranes was only slightly reduced by the follicular fluid. The post-microsomal supernatant of homogenates from ovaries of immature (27-day-old) rats collected 24–36 h after treatment with 15 i.u. of pregnant mare serum gonadotropin also inhibited luteinizing hormone-sensitive adenylate cyclase. The extent of this inhibition seemed to decline with follicular maturation. The possibility is raised that ovarian sulfated glycosaminoglycans are responsible for the observed inhibition of adenylate cyclase.  相似文献   

20.
Inhibition of adenylate cyclase by pretreatment with guanyl-5′-ylimidodiphosphate (10 μM) at 0°C was examined in particulates obtained from 8 non-neural tissues and from various areas of the CNS of the guinea pig. The excess of the GTP analog used for the pretreatment was removed by washing prior to the enzyme assay. Under these conditions, adenylate cyclase from all the non-neural tissues was activated or not altered while that from the brain was persistently inhibited with kinetics properties similar to those reported previously (Yamamoto and Shimizu, 1983). In the CNS, in general, the inhibition was more marked in those areas containing high densities of neuronal plasma membrane (cerebral cortex, cerebellum, hippocampus) than in areas consisting predominantly of myelin and glial cells (pons, medulla, spinal cord). The formation of a persistently inhibitory state presented herein represents one of the properties specific to brain adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号