首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.  相似文献   

2.
3.
Amelogenin, a matrix protein involved in biomineralization of enamel, can self-assemble to form nanospheres in a pH-dependent manner. Nucleic acids (single-stranded, double-stranded, and plasmid DNA, as well as RNA) could be co-precipitated with amelogenin, demonstrating a strong binding of nucleic acids to amelogenin. The amounts of co-precipitated nucleic acids were analyzed and binding levels upto 90 μg DNA/mg amelogenin was achieved. The co-precipitation could also be carried out in a bacterial cell homogenate, and no bacterial proteins were found in the amelogenin aggregates, suggesting specificity for nucleic acid binding. Dynamic light scattering showed that amelogenin nanosphere structure is maintained upon DNA binding with an upto 2.6 nm increase in diameter. The reported binding of nucleic acids to amelogenin can be explored practically for nucleic acid separation.  相似文献   

4.
Periodontal ligament stem cells (PDLSCs) have mesenchymal-stem-cells-like qualities, and are considered as one of the candidates of future clinical application in periodontal regeneration therapy. Enamel matrix derivative (EMD) is widely used in promoting periodontal regeneration. However, the effects of EMD on the proliferation and osteogenic differentiation of human PDLSCs grown on the Ti implant surface are still no clear. Therefore, this study examined the effects of EMD on human PDLSCs in vitro. Human PDLSCs were isolated from healthy participants, and seeded on the surface of Ti implant disks and stimulated with various concentrations of EMD. Cell proliferation was determined with Cell Counting Kit-8 (CCK-8). The osteogenic differentiation of PDLSCs was evaluated by the measurement of alkaline phosphatase (ALP) activity, Alizarin red staining, and real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The results indicated that EMD at concentrations (5–60 µg/ml) increased the viability and proliferation of PDLSCs. The treatment with 30 and 60 µg/ml of EMD significantly elevated ALP activity, augmented mineralized nodule formation and calcium deposition, and upregulated the mRNA and protein levels of Runx-2 and osteocalcin (OCN) in the PDLSCs grown on the Ti surface. Further investigation found that EMD treatment did not change the protein levels of phosphatidylinositol-3-kinase (PI3K), p-PI3K, Akt and mTOR, but significantly upregulated the phosphorylated levels of Akt and mTOR. Collectively, these results suggest that EMD stimulation can promote the proliferation and osteogenic differentiation of PDLSCs grown on Ti surface, which is possibly associated with the activation of Akt/mTOR signaling pathway.  相似文献   

5.
Emdogain, a formulation of enamel matrix derivative (EMD), is used clinically for regeneration of the periodontium (tooth supporting tissues), but the molecular mechanisms of its action have not been elucidated. Several clinical studies suggested that EMD may also improve gingival healing after periodontal surgery and thus affect the fate of gingival fibroblasts (GFs). Since these cells are targets for local inflammatory mediators such as TNF, a pro-apoptotic cytokine, during the course of periodontal disease, we tested whether EMD protects human GFs (hGFs) from TNF-induced cytotoxicity. Quiescent primary hGFs were challenged with TNF (10-100 ng/ml) with or without EMD (100 microg/ml) pretreatment. Cell viability was assessed by neutral red staining, cell death by LDH release and apoptosis by caspase activity. Signaling pathways were evaluated by Western blotting and pharmacological inhibitors. TNF induced classical signs of apoptosis in hGFs, including typical cellular morphology and increased caspase activity. TNF-induced cytotoxicity was entirely caspase-dependent. Pretreatment (4-24 h) with EMD dramatically inhibited the activation of initiator and executioner caspases and enhanced hGF survival. Although TNF induced the activation of p38 MAPK, JNK, ERK and PI-3K signaling, these pathways were not crucial for EMD protection of hGFs. However, EMD increased the levels of c-FLIP(L), an anti-apoptotic protein located upstream of caspase activation. These data demonstrate, for the first time, that EMD protects hGFs from inflammatory cytokines and, together with our recent reports that EMD stimulates rat and human GF proliferation, could help explain the mechanisms whereby in vivo use of EMD promotes gingival healing.  相似文献   

6.
Amelogenin is an extracellular protein first identified as a matrix component important for formation of dental enamel during tooth development. Lately, amelogenin has also been found to have positive effects on clinical important areas, such as treatment of periodontal defects, wound healing, and bone regeneration. Here we present a simple method for purification of recombinant human amelogenin expressed in Escherichia coli, based on the solubility properties of amelogenin. The method combines cell lysis with recovery/purification of the protein and generates a >95% pure amelogenin in one step using intact harvested cells as starting material. By using amelogenin as a fusion partner we could further demonstrate that the same method also be can explored to purify other target proteins/peptides in an effective manner. For instance, a fusion between the clinically used protein PTH (parathyroid hormone) and amelogenin was successfully expressed and purified, and the amelogenin part could be removed from PTH by using a site-specific protease.  相似文献   

7.
Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70) family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER)-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip), which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of potential clinical significance for understanding the cellular and molecular bases of amelogenin-induced periodontal tissue regeneration.  相似文献   

8.
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2–5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.  相似文献   

9.
Amelogenins are enamel matrix proteins that play a crucial role in enamel formation. Recent studies have revealed that amelogenins also have cell signaling properties. Although amelogenins had been described as specific products of ameloblasts, recent research has demonstrated their expression in bone marrow stromal cells. In this study, we examined the effect of recombinant human full-length amelogenin (rh174) on the proliferation of human mesenchymal stem cells (MSCs) derived from bone marrow and characterized the associated changes in intracellular signaling pathways. MSCs were treated with rh174 ranging in dose from 0 to 1,000 ng/ml. Cell proliferative activity was analyzed by bromodeoxyuridine (BrdU) immunoassay. The expression of lysosomal-associated membrane protein 1 (LAMP1), a possible amelogenin receptor, in MSCs was analyzed. Anti-LAMP1 antibody was used to block the binding of rh174 to LAMP1. The MAPK-ERK pathway was examined by Cellular Activation of Signaling ELISA (CASE) kit and western blot analysis. A specific MAPK inhibitor, U0126, was used to block ERK activity. It was shown that rh174 increased the proliferation of MSCs and MAPK-ERK activity. The MSC proliferation and MAPK-ERK activity enhanced by rh174 were reduced by the addition of anti-LAMP1 antibody. Additionally, the increased proliferation of MSCs induced by rh174 was inhibited in the presence of U0126. In conclusion, it is demonstrated that rh174 increases the proliferation of MSCs by interaction with LAMP1 through the MAPK-ERK signaling pathway, indicating the possibility of MSC application to tissue regeneration in the orofacial region.  相似文献   

10.
We previously demonstrated that the uptake of M180 amelogenin protein in dental epithelial cells (HAT-7) results in increased levels of amelogenin mRNA through enhanced mRNA stabilization. To determine the processes involved in the uptake of extracellular M180 amelogenin by cells and in amelogenin intracellular trafficking in the amelogenin protein-mediated amelogenin mRNA expression pathway, we investigated the effects of LAMP1 and LAMP3, which are candidate M180 amelogenin receptors, on M180 amelogenin uptake, localization and amelogenin mRNA induction by amelogenin protein, using anti-LAMP-1 and anti-LAMP-3 antibodies and siRNA analysis. The results indicate that LAMP3 blocking by anti-LAMP-3 decreases M180 amelogenin uptake, but does not affect amelogenin mRNA induction by amelogenin protein, suggesting that LAMP3 is related to amelogenin degradation. Down-regulation by siRNA of LAMP1, which is the receptor for small amelogenin protein (LRAP), does not affect M180 amelogenin uptake, localization or amelogenin mRNA induction by amelogenin protein. Thus, while LAMP1 is the specific receptor for LRAP, it is not a receptor for M180 amelogenin. These findings will aid further research into the understanding of M180 amelogenin function and expression.  相似文献   

11.
Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS‐bound‐phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 96–108, 2015.  相似文献   

12.
Antimicrobial peptide Temporin-Ra was isolated from the skin secretions of marsh frog Rana ridibunda. Temporin-Ra was chemically synthesized and purified using RP-HPLC technique. The cytotoxicity of peptide on lung airway epithelial cell line (A549) and peripheral blood mononuclear cells (PBMC) was studied by MTT assay. Furthermore, the effect of Temporin-Ra on the expression of pro-inflammatory factors such as IL-1β and IL-8 in A549 cell line was evaluated at peptide concentrations of 15, 30 and 50 μg/mL for 6, 12 and 24 h using semi-quantitative RT-PCR and real-time PCR methods. The result of our experiments revealed that Temporin-Ra decreased cell viability about 3–13 % in A549 cells and 4–6 % in PBMC cells. Moreover, Temporin-Ra induced the mRNA expression of IL-1β and IL-8 genes in a dose- and time-dependent manner. According to our results, maximum IL-8 mRNA expression was observed after a 24-h treatment of cancer cells with 50 μg/mL peptide with approximately 18-fold increase in expression. The least expression level of IL-1β was observed after 6-h of incubation in the presence of 15 μg/mL peptide with 2.5-fold increase in expression whereas the most expression level was obtained following 24 h-treatment with 50 μg/mL peptide with 26-fold increase in mRNA expression. Eventually, the present study highlights the role of Temporin-Ra as a potent antimicrobial peptide in the activation and maintenance of inflammatory processes.  相似文献   

13.
14.
Amelogenin is an extracellular matrix protein secreted by ameloblasts and is a major component of enamel matrix. Recently, in addition to their role in enamel formation, the biological activity of enamel proteins in the process of cell differentiation has recently become widely appreciated. In this study, we examined the biological activity of amelogenin on ameloblast differentiation. Recombinant mouse amelogenin (rm-amelogenin) enhanced the expression of endogenous amelogenin mRNA in a cultured dental epithelial cell line (HAT-7), despite a lack of increased amelogenin promoter activity. To solve this discrepancy, we analyzed the effects of rm-amelogenin on the stability of amelogenin mRNA. The half-life of amelogenin mRNA is extremely short, but in the presence of rm-amelogenin its half-life was extended three times longer than the control. Furthermore, we showed the entry of exogenous fluorescein isothiocyanate-conjugated rm-amelogenin into the cytoplasm of HAT-7 cells. It follows from our results that exogenous amelogenin increases amelogenin mRNA levels through stabilization of mRNA in the cytoplasm of HAT-7 cells. Here we speculated that during differentiation, dental epithelial cells utilize a unique mechanism for increasing the production of amelogenin, the reuptake of secreted amelogenin.  相似文献   

15.
The amelogenins are secreted by the ameloblast cells of developing teeth; they constitute about 90% of the enamel matrix proteins and play an important role in enamel biomineralization. Recent evidence suggests that amelogenin may also be involved in the regeneration of the periodontal tissues and that different isoforms may have cell-signalling effects. During enamel development and mineralization, the amelogenins are lost from the tissue due to sequential degradation by specific proteases, making isolation of substantial purified quantities of full-length amelogenin challenging. The aim of the present study was to express and characterize a recombinant human amelogenin protein in the eukaryotic baculovirus system in quantities sufficient for structural and functional studies. Human cDNA coding for a 175 amino acid amelogenin protein was subcloned into the pFastBac HTb vector (Invitrogen), this system adds a hexa-histidine tag and an rTEV protease cleavage site to the amino terminus of the expressed protein, enabling effective one-step purification by Ni2+-NTA affinity chromatography. The recombinant protein was expressed in Spodoptera frugiperda (Sf9) insect cells and the yield of purified his-tagged human amelogenin (rHAM+) was up to 10 mg/L culture. Recombinant human amelogenin (rHAM+) was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, peptide mapping, and MS/MS sequencing. Production of significant amounts of pure, full-length amelogenin opened up the possibility to investigate novel functions of amelogenin. Our recent in vivo regeneration studies reveal that the rHAM+ alone could bring about regeneration of the periodontal tissues; cementum, periodontal ligament, and bone.  相似文献   

16.
Pemetrexed (PMX) is an antineoplastic antifolate used in the treatment of non-small cell lung cancer, mesothelioma and several types of neoplasms. Its toxicity in tumor cells has been linked with the potent inhibition of thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyl transferase, and subsequent depletion of both purine and pyrimidine nucleotides. However, cytogenetic toxicity of PMX in non-diseased cells has not been adequately studied; despite the increasing data on the DNA-damaging potential of antineoplastic agents on normal cells. In the present study, the genotoxic potential of PMX was evaluated in peripheral blood lymphocytes obtained from healthy human subjects using chromosome aberration (CA), sister chromatid exchange (SCE) and micronucleus (MN) assays as the cytogenetic damage markers. Human peripheral blood lymphocytes were exposed to four different concentrations (25, 50, 75 and 100 μg/mL) of PMX for 24- and 48-h treatment periods. PMX significantly increased the formation of CA in 24-h treatment, but not in 48-h treatment. PMX did not increase the mean SCE frequency in 24- and 48-h treatment periods; however, there was a striking increase (although not statistically significant, p > 0.05) in the number of SCEs at 25 μg/mL (24- and 48-h treatment) and 50 μg/mL (24-h treatment) due to an increase of SCE at the single-cell level. Interestingly, PMX did not induce MN formation in either 24- or 48-h treatment periods. PMX strongly decreased the mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in 24- and 48-h treatment periods. Our results suggest that PMX has a potent cytotoxic effect against human peripheral blood lymphocytes at concentrations which are reached in vivo in the blood plasma.  相似文献   

17.
We recently demonstrated that the reuptake of full-length amelogenin protein results in increased levels of amelogenin mRNA through enhanced mRNA stabilization (Xu, L., Harada, H., Tamaki, T. Y., Matsumoto, S., Tanaka, J., and Taniguchi, A. (2006) J. Biol. Chem. 281, 2257-2262). Here, we examined the molecular mechanism of enhanced amelogenin mRNA stabilization. To identify the cis-regulatory region within amelogenin mRNA, we tested various reporter systems using a deletion series of reporter plasmids. A deletion at exon 6ABC of amelogenin mRNA resulted in a 2.5-fold increase in the amelogenin mRNA expression level when compared with that of full-length mRNA, indicating that a cis-element exists in exon 6ABC of amelogenin mRNA. Furthermore, Northwestern analysis demonstrated that amelogenin protein binds directly to its mRNA in vitro, suggesting that amelogenin protein acts as a trans-acting protein that specifically binds to this cis-element. Moreover, recombinant mouse amelogenin protein extended the half-life of full-length amelogenin mRNA but did not significantly alter the half-life of exon 6ABC-deletion mutant mRNA. The splice products produced by deletion of exon 6ABC are known as leucine-rich amelogenin peptides and have signaling effects on cells. Our findings also suggest that the regulation of full-length amelogenin protein expression differs from the regulation of leucine-rich amelogenin peptide expression.  相似文献   

18.
This paper reports the first successful isolation and cell wall regeneration of Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham protoplasts. These results form an important foundation for the development of a successful tissue culture system for G. gracilis. Initially, an isolation protocol was optimized by investigation of the effects of the enzyme constituents and concentrations, the pre-treatment of thalli, the incubation period and temperature, and the pH of the enzymatic medium on protoplast yields. A pre-treatment of G. gracilis thalli with 1 % (w/v) papain for 30 min followed by a 3-h enzymatic digestion of thalli with an enzymatic mixture containing 2 % (w/v) cellulase Onozuka R-10, 1 % (w/v) macerozyme R-10, and 10 U mL?1 agarase at pH 6.15 was found to produce the highest yield of protoplasts at 22 °C. Reliably high yields (20–30?×?105 protoplasts g?1 f.wt) of protoplasts could be obtained from G. gracilis thalli when this optimized protocol was used. Cell wall re-synthesis by G. gracilis protoplasts, which constitutes the first step towards whole plant regeneration, was followed using calcoflour staining and scanning electron microscopy. Protoplasts were shown to complete the initial stages of cell wall re-synthesis within the first 24 h of culturing.  相似文献   

19.
Chlorhexidine digluconate is the active ingredient in mouthrinses used to prevent dental plaque and gingivitis. Thein vitro cytotoxicity of chlorhexidine was evaluated with the Smulow-Glickman (S-G) gingival epithelial cell line. The potency of chlorhexidine was dependent on the length of exposure and composition of the exposure medium. The midpoint cytotoxicity values for 1-, 24-, and 72-h exposures were 0.106, 0.011, and 0.0045 mmol/L, respectively. S-G cells exposed for 2 h to chlorhexidine and then maintained for 48 h in chlorhexidine-free medium were unable to recover from the initial insult. The adverse effects of chlorhexidine on the plasma membrane were suggested by the leakage of lactic acid dehydrogenase from chlorhexidine-treated S-G cells and by the increased permeability of chlorhexidine-treated liposomes to Ca2+. The toxicity of a 24-h exposure to chlorhexidine to the S-G cells was progressively lessened as the content of fetal bovine serum (FBS) in the exposure medium was increased from 2% to 8%. The potency of a 1-h exposure to chlorhexidine was reduced in medium amended with albumin, lecithin, and heat-killedEscherichia coli. These reductions in toxicity were presumably due to the binding of the cat onic chlorhexidine to the negatively charged chemical moieties of the components of FBS and of albumin and lecithin and of sites on the surfaces of bacteria. Combinations of chlorhexidine and carbamide peroxide were additive in their cytotoxicities.Abbreviations ANOVA analysis of variance - [Ca2+]i calcium concentration in internal medium of liposomes - DMEM Dulbecco's modified Eagle medium - EDTA ethylenediamine tetraacetic acid - FBS fetal bovine serum - Hepes N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid - HGF-1 human gingival fibroblast cell line - HSD honestly significant differences - KB cell line derived from a human epidermoid carcinoma in the mouth - LDH lactic acid dehydrogenase - NADH nicotinamide adenine dinucleotide, reduced form - NR neutral red - NR50 concentration inhibiting neutral red uptake by 50% - PBS phosphate-buffered saline - SEM standard error of the mean - S-G Smulow-Glickman human gingival epithelial cell line  相似文献   

20.
The effects of three periods of exposure (12, 24 and 48 h) to different levels of putrescine (0, 0.2, 0.5, 1.0, 2.0 and 5.0 mg l?1), as well as three incubation periods (24, 48 and 72 h) to different levels of cefotaxime and vancomycin (0, 50, 100, 200 and 500 mg l?1) on microspore embryogenesis of rapeseed cv. ‘Hyola 401’ were assessed. Microspore embryogenesis was enhanced about threefold compared with untreated culture following 48 h treatment with 0.2 mg l?1 putrescine. Putrescine treatment at 0.5 mg l?1 for 48 h effectively induced root formation and increased normal plantlet regeneration by 92 % when microspore-derived embryos (MDEs) were transferred to regeneration medium. The highest embryo yield (184.2 embryos Petri dish?1) was possible when induction medium was supplemented with 50 mg l?1 cefotaxime for 24 h and the highest normal regeneration was observed in cultures exposed to 50 and 100 mg l?1 at all durations tested. More abnormal MDEs (76 and 82 %) were observed when microspores treated with 200 and 500 mg l?1 cefotaxime many of which failed to regenerate normally and resulted in callusing. Vancomycin at 100 mg l?1 during the 48 h exposure increased the number of MDEs (181.6 embryos Petri dish?1) in contrast to untreated cultures (93.6 embryos Petri dish?1) but, normal plantlet regeneration decreased as vancomycin level increased and high callusing (84 and 90 %) was observed with 200 and 500 mg l?1 for 72 h. Microspore embryogenesis and plant regeneration could be improved by putrescine, cefotaxime and vancomycin when appropriate levels and durations of incubation were selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号