首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quorum sensing, or the control of gene expression in response to cell density, is used by both gram-negative and gram-positive bacteria to regulate a variety of physiological functions. In all cases, quorum sensing involves the production and detection of extracellular signalling molecules called autoinducers. While universal signalling themes exist, variations in the design of the extracellular signals, the signal detection apparatuses, and the biochemical mechanisms of signal relay have allowed quorum sensing systems to be exquisitely adapted for their varied uses. Recent studies show that quorum sensing modulates both intra- and inter-species cell-cell communication, and it plays a major role in enabling bacteria to architect complex community structures.  相似文献   

2.
通过分泌和感知一系列信号分子,细菌能够根据自身菌体密度的变化调控基因的表达,从而控制一系列重要的表现型,包括毒力因子的产生,生物膜的形成以及菌体发光等.这种广泛存在的信号机制被称为群体感应.在沙雷氏菌种中已经发现了多套群体感应机制.粘质沙雷氏菌AS-1从土壤中分离,其中含有LuxI/LuxR的同类蛋白,被称为SpnI/SpnR.粘质沙雷氏菌AS-1合成AHLs分子N-hexanoy1-L-homoserinelactone(C6-HSL)和N-(3.oxohexanoyl)-L-homoserine lactone(3-oxo-C6-HSL)作为其信号分子,通过群体感应感知菌体密度来控制基因的表达.通过基因替代的方法制得了spnR基因破坏的变异株,命名为粘质沙雷氏菌AS-1R.对粘质沙雷氏菌AS-1R的研究表明SpnR蛋白消极的调控沙雷氏菌红色色素的产生,运动性以及生物膜的形成等一系列由群体感应控制的性状:另一方面,作为一种天然的群体感应抑制剂,卤化呋喃能够有效的抑制粘质沙雷氏菌AS-1的群体感应,但并不干扰AHL-SpnR的相互作用.为运用粘质沙雷氏菌群体感应调节抑制其致病性提供了方法和依据,同时也为卤化呋喃对群体感应抑制机理的研究提供了新的思路.  相似文献   

3.
Bacterial communication via quorum sensing has been extensively investigated in recent years. Bacteria communicate in a complex manner through the production, release, and reception of diffusible low molecular weight chemical signaling molecules. Much work has focused on understanding the basic mechanisms of quorum sensing. As more and more bacteria grow resistant to conventional antibiotics, the development of drugs that do not kill bacteria but instead interrupt their communication is of increasing interest. This study presents a method for analyzing bacterial communication by investigating single cell responses. Most conventional analysis methods for bacterial communication are based on the averaged response from many bacteria, masking how individual cells respond to their immediate environment. We applied a fiber-optic microarray to record cellular communication from single cells. Single cell quorum sensing systems have previously been employed, but the highly ordered array reported here is an improvement because it allows us to simultaneously investigate cellular communication in many different environments with known cellular densities and configurations. We employed this method to detect how genes under quorum regulation are induced or repressed over time on the single cell level and to determine whether cellular density and configuration are indicative of the single cell temporal patterns of gene expression.  相似文献   

4.
群体感应系统是一种细胞密度依赖的基因表达系统,其广泛存在于细菌性病原体中,是细菌细胞通讯方式的一种。群体感应系统可利用细菌释放的信号分子不断监控周围细菌的密度。当细菌密度达到阈值时,群体感应系统网络将启动,参与调控生物被膜、细菌毒力等特定基因的表达,从而使临床抗感染治疗失败。而通过抑制群体感应系统,可一定程度上治疗铜绿假单胞菌引起的感染。本文通过查阅近年国内外相关文献,对铜绿假单胞菌群体感应系统研究进展进行总结,为临床铜绿假单胞菌治疗提供新的方向,即群体感应系统抑制剂有可能成为治疗铜绿假单胞菌感染的新策略。  相似文献   

5.
群体感应信号分子AI-2研究进展   总被引:9,自引:0,他引:9  
群体感应(QS)是细菌根据种群密度的变化调控基因表达,协调群体行为的机制。除具有种特异性的信号分子AI-1外,近年来发现一类新的信号分子AI-2在调控细菌基因表达中起重要作用。AI-2的结构和生物合成途径已被确定,其产生依赖于一种称为LuxS的蛋白。目前认为AI-2在细菌种间交流中起通用信号分子(universalsignal)的作用。了解细菌的QS调控过程以及种间细胞交流的新机制,有助于对细菌病害进行防治。  相似文献   

6.
群体感应(Quorum sensing,QS)是一种细菌细胞与细胞间的通讯系统,即细菌通过分泌扩散性小分子信号感知细菌群体的密度,从而引起一组特定基因在转录水平协调表达。大量研究已表明,群体感应系统控制细菌多种生理行为和过程,以及与真核宿主(寄主)的互作。参与群体感应调控的信号分子多种多样,QS系统所调控的功能也具有多样性,甚至菌株专化性。通过聚焦同一细菌中由多个QS系统组成的信号网络,综合评述了不同QS系统之间如何相互作用全局调控基因表达,以及QS系统如何通过与其它全局调控系统整合精细调节细菌的社会行为以及环境适应性及其应用前景。  相似文献   

7.
群体感应(quorum sensing, QS)是一种广泛存在于多种微生物中的胞间通信系统,细菌产生的自诱导物随着种群密度的增加而积累,诱导细菌对种群密度的响应,调节生物膜的形成或特定基因的表达。近年来,随着群体感应系统原理与关键元件的逐渐清晰,应用合成生物学手段进行多技术联合以及多系统间正交性设计具有极大的发展潜力,群体感应系统已成为合成生物学家动态调控胞间通信常用的重要手段之一。在群体感应是细胞-细胞间通信系统的基础上,对多种群体感应系统的联合设计在生物基化学品生产中自动化调控的研究进展进行综述;并针对群体感应系统在生物电化学转化领域实现双向生物信息交流的应用进行总结;同时归纳了医学领域中群体感应系统的动态调控功能与多种疾病诊断及治疗结合的研究进展,讨论了群体感应系统在多细胞通信和实际应用等方面的发展前景。  相似文献   

8.
很多细菌在生长过程中会产生一些小分子量的自诱导分子,也称为信号分子,当其随着细胞数量增加而积累到一定阈值时能够调控细菌特定基因的表达,这个过程称为群体感应(Quorum sensing,QS)。多数自诱导分子具有物种特异性,但很多种属的细菌都会产生一种共同的自诱导分子AI-2,AI-2被认为是细菌种间交流的通用语言。定量检测AI-2对于研究与其相关的生理生化过程是非常必要的。然而,目前还没有一种标准的定量检测AI-2的方法。因此,本文就目前关于AI-2的检测方法进行综述,为后续研究者提供参考。  相似文献   

9.
密度感应系统:对细菌致病力的自行调控   总被引:1,自引:1,他引:0  
细菌通过密度感应系统感受环境中的信号分子,进而调控菌群一系列生物学性状。研究发现密度感应系统能够调控细菌生物被膜形成、毒力基因表达及噬菌体感染等功能,其中基于密度感应系统调控细菌抵御噬菌体感染更是新发现,预期也将是未来数年的研究热点,其调控机制的阐明将为有效应用噬菌体开展耐药菌的防控展现广阔前景。本文将重点综述细菌密度感应系统对细菌致病相关功能的调控机制,旨在为病原菌的防控提供新思路。  相似文献   

10.
Cell-to-cell signaling in intestinal pathogens   总被引:2,自引:0,他引:2  
In the conventional view of prokaryotic life, bacteria live a unicellular existence, with responses to external stimuli limited to the detection of chemical and physical signals of environmental origin. This view of bacteriology is now recognized as overly simplistic, because bacteria communicate with each other through small "hormone-like" organic compounds referred to as autoinducers (Als). These bacterial cell-to-cell signaling systems were initially described as mechanisms through which bacteria regulate gene expression via cell density, and, therefore, they have been named quorum sensing. When the Als reach a threshold concentration, they interact with regulatory proteins, thereby driving bacterial gene expression. Bacterial intercellular communication provides a mechanism for the regulation of gene expression resulting in coordinated population behavior. The functions controlled by quorum sensing are varied and reflect the needs of a particular species of bacteria inhabiting a given niche. Quorum sensing-controlled processes include bioluminescence, virulence factor expression, biofilm development, and conjugation among others. Enteric pathogens use quorum sensing to regulate genes involved in virulence, such as motility, and type III secretion. Quorum sensing is utilized to sense the presence of the normal intestinal flora and to warrant successful colonization of the host.  相似文献   

11.
我国马铃薯软腐病防治的研究进展   总被引:1,自引:0,他引:1  
马铃薯软腐病是马铃薯细菌性病害中最严重的一种,简要介绍了我国马铃薯软腐病的病原菌、病害性状以及对病害的防治方法。利用现代生物技术手段人为地操纵细菌群体感应系统,将会成为提高植物抗病性的新方法、新途径。  相似文献   

12.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here.  相似文献   

13.
Bacterial social engagements   总被引:23,自引:0,他引:23  
Quorum sensing is a process that enables bacteria to communicate using secreted signaling molecules called autoinducers. This process enables a population of bacteria to regulate gene expression collectively and, therefore, control behavior on a community-wide scale. Quorum sensing is widespread in the bacterial world and, generally, processes controlled by quorum sensing are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. Cell-cell communication can occur within and between bacterial species, and between bacteria and their eukaryotic hosts, which suggests that the chemical lexicon is complex. Prokaryotic and eukaryotic mechanisms for enhancing and inhibiting quorum sensing have been identified, which suggests that manipulation of quorum-sensing-controlled processes could be common in bacterial-bacterial and bacterial-eukaryotic associations.  相似文献   

14.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here.  相似文献   

15.
摘要:细菌群体感应(Quorum sensing, QS)被视为对抗细菌感染与解决细菌耐药性问题的新靶点。以AHLs为信号分子的LuxR/I型群体感应系统广泛存在于革兰氏阴性菌包括多种临床致病菌中,因此寻找LuxR/I型群体感应抑制剂(Quorum sensing inhibitors, QSIs)是研发抗革兰氏阴性致病菌药物的重要途径。迄今为止,已知的LuxR/I型小分子QSIs来源包括化学合成、天然产物与已知药物库的化合物,大分子则包括群体感应淬灭酶与群体感应淬灭抗体。本文总结了近年来LuxR/I型QSIs研究进展,为新型抗菌药物研发提供理论依据。  相似文献   

16.
真菌中的群体感应系统   总被引:7,自引:0,他引:7  
李曼  邱健  宋水山 《微生物学通报》2007,34(3):0566-0568
以胞间通讯信号分子介导的细菌群体感应参与细菌多种生理功能的调控是非常普遍的。近年的研究表明,真菌中也存在类似于细菌群体感应信号分子的调节分子,并且介导着真菌某些生理行为的调节。这一过程也称为真菌的群体感应系统。文中简要介绍真菌群体感应系统的研究进展,并讨论了真菌群体感应系统作为抗真菌感染靶点的可能性。  相似文献   

17.
18.
19.
„Small Talk“     
The silent communication of bacteria Bacteria communicate via small diffusible molecules, a process that microbiologists refer to as quorum sensing. These language molecules are released by the bacteria in the environment and are then sensed by their neighbours via specific receptors. Thus, the community can arrange and adapt specific phenotypes in dependence on the cell count termed quorum. Due to the different structures and modifications of the communication molecules bacteria have evolved different languages and dialects, which can in addition give information about time and venue. Moreover, bacteria have small talk with their hosts such as animals, plants and yet humans. Since communication is a prerequisite for the infection of hosts by pathogenic bacteria, the molecular components of the bacterial communication are promising candidates as targets for badly needed new antimicrobial drugs.  相似文献   

20.
Excessive and indiscriminate use of antibiotics to treat bacterial infections has lead to the emergence of multiple drug resistant strains. Most infectious diseases are caused by bacteria which proliferate within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. These molecules act primarily by quenching the QS system. The phenomenon is also termed as quorum quenching (QQ). In addition, synthetic compounds have also been found to be effective in QQ. This review focuses primarily on natural and synthetic quorum sensing inhibitors (QSIs) with the potential for treating bacterial infections. It has been opined that the most versatile prokaryotes to produce QSI are likely to be those, which are generally regarded as safe. Among the eukaryotes, certain legumes and traditional medicinal plants are likely to act as QSIs. Such findings are likely to lead to efficient treatments with much lower doses of drugs especially antibiotics than required at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号