首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mannheimia haemolytica causes respiratory disease in cattle. Amyloid proteins are a major component of biofilms; they aid in adhesion and confer resistance against several environmental insults. The amyloid protein curli is highly resistant to protease digestion and physical and chemical denaturation and binds Congo red (CR) dye. The purpose of this study was to characterize an approximately 50-kDa CR-binding amyloid-like protein (ALP) expressed by M. haemolytica. This protein resisted boiling and formic acid digestion and was recognized by a polyclonal anti-Escherichia coli curli serum, suggesting its relationship with amyloid proteins. Immunolabeling and transmission electron microscopy showed that antibodies bound long, thin fibers attached to the bacterial surface. Mass spectrometry analysis indicated that these fibers are M. haemolytica OmpP2-like proteins. The purified protein formed filaments in vitro, and antiserum against it reacted positively with biofilms. An in silico analysis of its amino acid sequence indicated it has auto-aggregation properties and eight amyloid peptides. Rabbit polyclonal antibodies generated against this ALP diminished the adhesion of ATCC 31612 and BA1 M. haemolytica strains to A549 human epithelial cells, indicating its participation in cell adhesion. ALP expressed by M. haemolytica may be important in its pathogenicity and ability to form biofilms.  相似文献   

2.
IgA protease is secreted by various mucosal pathogenic bacteria which can cleave human immunoglobulin A1 (IgA1) in its hinge region. In addition to be considered as a virulence factor, it's reported that IgA protease can also be used for IgA nephropathy (IgAN) treatment. Our previous study identified bacteria H. influenzae 49247 expressed high activity of IgA protease with promised application in IgAN therapy. In this study, we cloned the IgA protease gene of H. influenzae 49247 with degenerate primers. Alignment analysis indicated that H. influenzae 49247 IgA protease showed unique DNA and amino acid sequence but with typical endopeptidase domain and beta transporter domain compared with known IgA proteases from the same species. To facilitate expression and purification, the H. influenzae 49247 IgA protease gene was sub-cloned into the pET28-A(+) vector with insertion of a 6xHis tag downstream of the endopeptidase domain and upstream of the potential autocleavage site. The recombined IgA protease can be constitutively expressed in E. coli and secreted into the culture medium. With a simple nickel affinity binding, the secreted IgA protease can be purified with high purity (95%) and a molecular weight of about 130 kDa. The identity of the IgA protease was validated by the presence of 6xHis tag in the purified protein by western blotting and its ability to cleave human IgA1 molecule. Collectively, the successful cloning, expression and purification of H. influenzae 49247 IgA protease will augment its therapeutic study in IgAN treatment.  相似文献   

3.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

4.

Objectives

To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis.

Results

The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively.

Conclusions

Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.
  相似文献   

5.

Objective

To characterize a novel xanthine dehydrogenase (XDH) from Acinetobacter baumannii by recombinant expression in Escherichia coli and to assess its potential for industrial applications.

Results

The XDH gene cluster was cloned from A. baumannii CICC 10254, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant XDH consisted of two subunits with the respective molecular weights of 87 kDa and 56 kDa according to SDS-PAGE. XDH catalysis was optimum at pH 8.5 and 40–45 °C, was stable under alkaline conditions (pH 7–11) and the half-inactivation temperature was 60 °C. The K m, turnover number and catalytic efficiency for xanthine were 25 μM, 69 s?1 and 2.7 μM?1 s?1, respectively, which is an improvement over XDHs characterized previously. A. baumannii XDH is less than 50 % identical to previously identified XDH orthologs from other species, and is the first from the Acinetobacter genus to be characterized.

Conclusion

The novel A. baumannii enzyme was found to be among the most active, thermostable and alkaline-tolerant XDH enzymes reported to date and has potential for use in industrial applications.
  相似文献   

6.
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni–NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.  相似文献   

7.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

8.
9.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

10.
11.
The operon for the Bacillus stearothermophilus SE-589 nickase-modification system (NM.BstSEI, recognition site 5′-GAGTC-3′) includes two DNA methyltransferase (M.) genes, bstSEIM1 and bstSEIM2. The gene encoding M2.BstSEI was cloned in pJW and expressed in Escherichia coli cells. M2.BstSEI was purified by chromatography and displayed maximal activity at 55° C and pH 7.5. The enzyme modified adenine in the nickase recognition site 5′-GAGTC-3′ and was specific for 5′-GASTC-3′ substrates. The kinetic parameters of the methylation reaction were determined. The catalytic constant was 2.2 min?1, and the Michaelis constant was 9.8 nM on T7 DNA and 5.8 μM on SAM.  相似文献   

12.
13.
Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.  相似文献   

14.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

15.
16.
17.
18.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

19.
As one of the most important phytohormones, the abscisic acid (ABA) is often used to breed stress-tolerant crop lines with both higher yields and active ingredient contents. In higher plants, the 9-cis-epoxycarotenoid dioxygenase (NCED) has been found to be a regulatory enzyme involved in ABA biosynthesis. In research, the novel gene SmNCED3 was isolated from S. miltiorrhiza. The open reading frame of SmNCED3 was 1725-bp, and it was encoding 574 amino acids with a calculated molecular mass of 63,822 kDa, which was verified by the expression of SmNCED3 in E. coli. The deduced SmNCED3 amino acid sequence had high sequence homology with NCED sequences from other plants and contained a putative chloroplast transit targeting signal peptide at its N terminus. Phylogenetic analysis demonstrated that SmNCED3 had a closer affinity to NCED3 in Arabidopsis thaliana (AtNCED3). The 1732-bp 5′ flanking sequence of SmNCED3 was also cloned. It contained several phytohormone response elements, biotic or abiotic stress-related elements, and plant development-related elements. Real-time PCR revealed that SmNCED3 was highly expressed in leaves, and was strongly induced by exogenous ABA. A subcellular localization experiment indicated that SmNCED3 was located in chloroplast stroma, chloroplast membranes, and thylakoid membranes. The overexpression of SmNCED3 promoted ABA accumulation. These results indicated that SmNCED3 might be a rate-limiting gene regulating ABA biosynthesis, and improving abiotic stresses tolerance and active ingredient contents in plants.  相似文献   

20.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号