首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The functional expression of olfactory receptors (ORs) is a primary requirement to utilize olfactory detection systems. We have taken advantage of the functional similarities between signal transduction cascades in the budding yeast Saccharomyces cerevisiae and mammalian cells. The yeast pheromone response pathway has been adapted to allow ligand‐dependent signaling of heterologous expressed G‐protein coupled receptors (GPCRs) via mammalian or chimeric yeast/mammalian Gα proteins. Two different strategies are reported here which offer a positive screen for functional pairs. The OR and Gα protein are introduced into the modified yeast cells such that they hijack the pheromone response pathway usually resulting in cell cycle arrest. The first strategy utilizes ligand‐induced expression of a FUS1‐HIS3 reporter gene to permit growth on a selective medium lacking histidine; the second to induce ligand‐dependent expression of a FUS1‐Hph reporter gene, conferring resistance to hygromycin. Validation of the systems was performed using the rat I7 receptor response to a range of aldehyde odorants previously characterized as functional ligands. Of these only heptanal produced a positive growth response in the concentration range 5 × 10?8 to 5 × 10?6 M. Induction conditions appear to be critical for functional expression, and the solvents of odorants have a toxic effect for the highest odorant concentrations. The preference of rat I7 receptor for the ligand heptanal in yeast has to be compared to concurrent results obtained with mammalian expression systems.  相似文献   

2.
To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1‐like:c.632C>T, OR10H1‐like:c.770A>T, OR2K2‐like:c.518G>A, OR4C11‐like:c.511T>G and OR4C11‐like:c.692G>A loci had a statistically significant effect on the scenting abilities (< 0.001). The kind of odor influenced the performances of the dogs (< 0.001). In addition, there were interactions between genotype and the kind of odor at the following loci: OR10H1‐like:c.632C>T, OR10H1‐like:c.770A>T, OR4C11‐like:c.511T>G and OR4C11‐like:c.692G>A (P < 0.001). The dogs with genotype CC at the OR10H1‐like:c.632C>T, genotype AA at the OR10H1‐like:c.770A>T, genotype TT at the OR4C11‐like:c.511T>G and genotype GG at the OR4C11‐like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential.  相似文献   

3.
Background information. The idea that GPCRs (G‐protein‐coupled receptors) may exist as homo‐ or hetero‐oligomers, although still controversial, is now widely accepted. Nevertheless, the functional roles of oligomerization are still unclear and gaining greater insight into the mechanisms underlying the dynamics of GPCR assembly and, in particular, assessing the effect of ligands on this process seems important. We chose to focus our present study on the effect of MT7 (muscarinic toxin 7), a highly selective allosteric peptide ligand, on the oligomerization state of the hM1 (human M1 muscarinic acetylcholine receptor subtype). Results. We analysed the hM1 oligomerization state in membrane preparations or in live cells and observed the effect of MT7 via four complementary techniques: native‐PAGE electrophoresis analysed by both Western blotting and autoradiography on solubilized membrane preparations of CHO‐M1 cells (Chinese‐hamster ovary cells expressing muscarinic M1 receptors); FRET (fluorescence resonance energy transfer) experiments on cells expressing differently tagged M1 receptors using either an acceptor photobleaching approach or a novel fluorescence emission anisotropy technique; and, finally, by BRET (bioluminescence resonance energy transfer) assays. Our results reveal that MT7 seems to protect the M1 receptor from the dissociating effect of the detergent and induces an increase in the FRET and BRET signals, highlighting its ability to affect the dimeric form of the receptor. Conclusions. Our results suggest that MT7 binds to a dimeric form of hM1 receptor, favouring the stability of this receptor state at the cellular level, probably by inducing some conformational rearrangements of the pre‐existing muscarinic receptor homodimers.  相似文献   

4.
Functional asymmetry of G‐protein‐coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT1 receptor, which directly and constitutively couples to Gi proteins and the regulator of G‐protein signalling (RGS) 20. The molecular organization of the ternary MT1/Gi/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of Gi and the RGS domain, we propose a model wherein one Gi and one RGS20 protein bind to separate protomers of MT1 dimers in a pre‐associated complex that rearranges upon agonist activation. This model was further validated with MT1/MT2 heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR‐interacting proteins.  相似文献   

5.
Regulators of G-protein signaling (RGSs) are negative regulators of G-protein coupled receptor (GPCR)-mediated signaling that function to limit the lifetime of receptor-activated G(alpha)-proteins. Here we show that four mammalian RGSs differentially inhibit the activation of a FUS1--LacZ reporter gene by the STE2 encoded GPCR in yeast. In order to examine the role of the GPCR in modulating RGS function, we functionally expressed the human somatostatin receptor 5 (SST(5)) in yeast. In the absence of RGSs, FUS1--LacZ activation in response to somatostatin increased in a dose-dependent manner in cells expressing SST(5). In contrast to the results obtained with Ste2p, all RGSs completely inhibited SST(5)-mediated signaling even at concentrations of agonist as high as 10(minus sign5) M. The ability of RGSs to inhibit SST(5) signaling was further assessed in cells expressing modified Gpa1 proteins. Even though SST(5)-mediated FUS1--LacZ activation was 5-fold more efficient with a Gpa1p/G(i3alpha) chimera, response to somatostatin was completely abolished by all four RGSs. Furthermore, we demonstrate that RGS1, RGS2 and RGS5 have reduced ability to inhibit SST(5)-mediated activation of the RGS-resistant Gpa1p(Gly302Ser) mutant suggesting that the ability to interact with the G(alpha)-protein is required for the inhibition of signaling. Taken together, our results indicate that RGSs serve as better GAPs for Gpa1p when activated by SST(5) than when this G-protein is activated by Ste2p.  相似文献   

6.
In Saccharomyces cerevisiae, mechanisms modulating the mating steps following cell cycle arrest are not well characterized. However, the N‐terminal domain of Ste2p, a G protein‐coupled pheromone receptor, was recently proposed to mediate events at this level. Toward deciphering receptor mechanisms associated with this mating functionality, scanning mutagenesis of targeted regions of the N‐terminal domain has been completed. Characterization of ste2 yeast overexpressing Ste2p variants indicated that residues Ile 24 and Ile 29 as well as Pro 15 are critical in mediating mating efficiency. This activity was shown to be independent of Ste2p mediated G1 arrest signaling. Further analysis of Ile 24 and Ile 29 highlight the residues' solvent accessibility, as well as the importance of the hydrophobic nature of the sites, and in the case of Ile 24 the specific size and shape of the side chain. Mutation of these Ile's led to arrest of mating after cell contact, but before completion of cell wall degradation. We speculate that these extracellular residues mediate novel receptor interactions with ligand or proteins, leading to stimulation of alternate signaling effector pathways. J. Cell. Biochem. 107: 630–638, 2009. © 2009 Crown in the right of Canada.  相似文献   

7.
P. Bu  Z. Jian  J. Koshy  Y. Shen  B. Yue  Z. Fan 《Animal genetics》2019,50(4):358-366
Olfactory receptors (ORs) are encoded by OR genes. The OR genes in forest musk deer (Moschus berezovskii), which rely on olfaction for reproductive and social communication, are poorly understood. In this study, we analyzed the genome sequence of the forest musk deer to obtain its olfactory subgenome and compared it to other species. A total of 1378 OR‐related sequences were detected in the forest musk deer genome including 864 functional genes, 366 pseudogenes and 148 partial genes. These OR genes were classified into Class I and Class II and were further classified into 18 families and 244 subfamilies through sequence identity. Comparative analyses of the OR genes’ protein sequences in species from different orders (forest musk deer, human, mouse and dog) showed that 12 clusters were specific to forest musk deer. However, when compared to other Artiodactyl species (i.e. cattle, yak and pig) only two clusters were specific to forest musk deer. The odor identification potential of the OR genes in the forest musk deer was focused mainly on floral, woody, lemon, sweet and fatty odors. We also found that OR genes specific to forest musk deer were involved in the identification of spearmint and caraway. Our work is the first genome‐wide analysis of OR genes in forest musk deer. These findings will assist with better understanding the relationship between behavior and olfaction in the forest musk deer and the characteristics of the olfactory subgenome in Artiodactyl mammals.  相似文献   

8.
The budding yeast, Saccharomyces cerevisiae, is an attractive host for studying G protein-coupled receptors (GPCRs). We developed a system in which a peptide ligand specific for GPCR is displayed on yeast plasma membrane. The model system described here is based on yeast plasma membrane display of an analogue of α-factor, which is a peptide ligand for Ste2p, the GPCR that activates the yeast pheromone response pathway. α-Factor analogues, containing linkers of varying lengths and produced in yeast cells, became attached to the cell plasma membrane by linking to the glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein Yps1p. We were able to demonstrate that an optimized α-factor analogue activated the pheromone response pathway in S. cerevisiae, as assessed by a fluorescent reporter assay. Furthermore, it was shown that linker length strongly influenced signalling pathway activation. To our knowledge, this is the first report documenting functional signalling by a plasma membrane-displayed ligand in S. cerevisiae.  相似文献   

9.
The functional expression of olfactory receptors (ORs) is a primary requirement to examine the molecular mechanisms of odorant perception and coding. Functional expression of the rat I7 OR and its trafficking to the plasma membrane was achieved under optimized experimental conditions in the budding yeast Saccharomyces cerevisiae. The membrane expression of the receptor was shown by Western blotting and immunolocalization methods. Moreover, we took advantage of the functional similarities between signal transduction cascades of G protein-coupled receptor in mammalian cells and the pheromone response pathway in yeast to develop a novel biosensor for odorant screening using luciferase as a functional reporter. Yeasts were engineered to coexpress I7 OR and mammalian G(alpha) subunit, to compensate for the lack of endogenous Gpa1 subunit, so that stimulation of the receptor by its ligands activates a MAP kinase signaling pathway and induces luciferase synthesis. The sensitivity of the bioassay was significantly enhanced using mammalian G(olf) compared to the G(alpha15) subunit, resulting in dose-dependent responses of the system. The biosensor was probed with an array of odorants to demonstrate that the yeast-borne I7 OR retains its specificity and selectivity towards ligands. The results are confirmed by functional expression and bioluminescence response of human OR17-40 to its specific ligand, helional. Based on these findings, the bioassay using the luciferase reporter should be amenable to simple, rapid and inexpensive odorant screening of hundreds of ORs to provide insight into olfactory coding mechanisms.  相似文献   

10.
11.
12.
Neurotensin receptor type-1 (NTSR1) is a member of the G-protein-coupled receptor (GPCR) family. The natural ligand of NTSR1 is neurotensin (NT), a neuromodulator of the central nervous system. Because NT is also involved in many oncogenic actions, the signaling mediator NTSR1 is a significant molecular target in medicinal and therapeutic fields. In the current study, we constructed a fluorescence-based microbial yeast biosensor that can monitor the activation of human NTSR1 signaling responding to its agonist. To increase the sensitivity of the biosensor, a yeast strain with the green fluorescent protein (GFP) reporter gene was genetically engineered to enhance binding with human NTSR1 expressed on the membrane. Following previous reports, the 5 carboxy-terminal amino acid residues of the guanine nucleotide binding protein α-subunit (Gα) in yeast Gpa1p were substituted with the equivalent human Gαq sequences (Gpa1/Gαq transplant). After optimizing the assay conditions, the Gα-engineered yeast demonstrated significantly improved sensing for NTSR1 signaling. Because detection using a GFP fluorescence reporter considerably simplifies the measurement procedure, this microbial fluorescence sensor holds promise for use in the diagnosis of NTSR1-associated diseases and the development of agonists.  相似文献   

13.
Endocytic internalization of G protein-coupled receptors (GPCRs) plays a critical role in down-regulation of GPCR signaling. The yeast mating pheromone receptor Ste2p has been used as a model to investigate mechanisms of signal transduction, modification, and endocytic internalization of GPCRs. We previously used a fluorescently labeled mating pheromone derivative to reveal unappreciated molecular and spatiotemporal features of GPCR endocytosis in budding yeast. Here, we identify recruitment of Ste2p to preexisting clathrin-coated pits (CCPs) as a key step regulated by receptor phosphorylation and subsequent ubiquitination upon ligand binding. The yeast casein kinase I homologue Yck2p directly phosphorylates six serine residues located in the C-terminal tail of Ste2p, and mutation of these serine residues to alanine significantly decreased recruitment of Ste2p to CCPs. We also found that the clathrin adaptors Ent1p, Ent2p, and Ede1p work cooperatively to recruit ubiquitinated Ste2p to CCPs. In addition, ubiquitination has a role in ligand-independent constitutive recruitment of Ste2p to CCPs, although this process is much slower than ligand-induced recruitment. These results suggest that ubiquitination of Ste2p is indispensable for recruiting Ste2p to CCPs in both ligand-dependent and ligand-independent endocytosis.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the hetero-trimeric G protein transduces the mating pheromone signal from a cell-surface receptor. Free Gβγ then activates a mitogen-activated protein (MAP) kinase cascade. STE50 has been shown to be involved in this pheromone signal-transduction pathway. In this study, we present a functional characterization of Ste50p, a protein that is required to sustain the pheromone-induced signal which leads cells to hormone-induced differentiation. Inactivation of STE50 leads to the attenuation of mating pheromone-induced signal transduction, and overexpression of STE50 intensifies the pheromone-induced signalling. By genetic analysis we have positioned the action of Ste50p downstream of the α-pheromone receptor (STE2), at the level of the heterotrimeric G protein, and upstream of STE5 and the kinase cascade of STE11 and STE7. In a two-hybrid assay Ste50p interacts weakly with the G protein and strongly with the MAPKKK Ste11p. The latter interaction is absent in the constitutive mutant Ste11pP279S. These data show that a new component, Ste50p, determines the extent and the duration of signal transduction by acting between the G protein and the MAP kinase complex in S. cerevisiae.  相似文献   

15.
Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.  相似文献   

16.
We describe a Saccharomyces cerevisiae bioluminescence assay for UV and arsenate in which bacterial luciferase genes are regulated by the promoter of the yeast gene, UFO1. UFO1 encodes the F-box subunit of the Skp1–Cdc53–F-box protein ubiquitin ligase complex and is induced by DNA damage and by arsenate. We engineered the UFO1 promoter into an existing yeast bioreporter that employs human genes for detection of steroid hormone-disrupting compounds in water bodies. Our analysis indicates that use of an endogenous yeast promoter in different mutant backgrounds allows discrimination between different environmental signals. The UFO1-engineered yeast give a robust bioluminescence response to UVB and can be used for evaluating UV protective sunscreens. They are also effective in detecting extremely low concentrations of arsenate, particularly in pdr5Δ mutants that lack a mechanism to extrude toxic chemicals; however, they do not respond to cadmium or mercury. Combined use of endogenous yeast promoter elements and mutants of stress response pathways may facilitate development of high-specificity yeast bioreporters able to discriminate between closely related chemicals present together in the environment.  相似文献   

17.
We have tested the use of firefly luciferase for monitoring regulated symbiotic nitrogen fixation gene expression. Broad-host-range plasmids carrying translational fusions of Rhizobium meliloti nifH, fixA and nifA promoters were constructed. Despite low levels of promoter activity the absence of Escherichia coli endogenous luminescence and the high sensitivity of the bioluminescent assay for firefly luciferase allowed rapid screening for functional luciferase expression. Plasmids containing symbiotic promoter-luc fusions were established in R. meliloti. Luciferase activity was detected and measured in both vegetative and symbiotic cells giving comparable results with those obtained by beta-galactosidase assays. In addition, the luciferase assay was quicker, more sensitive and could be carried out with unrestricted cells. Furthermore, bioluminescence was high enough in alfalfa nodules containing nifHluc fusion to be observed by a dark-adapted eye and photographed.  相似文献   

18.
According to receptor theory, the effect of a ligand depends on the amount of agonist–receptor complex. Therefore, changes in receptor abundance should have quantitative effects. However, the response to pheromone in Saccharomyces cerevisiae is robust (unaltered) to increases or reductions in the abundance of the G‐protein‐coupled receptor (GPCR), Ste2, responding instead to the fraction of occupied receptor. We found experimentally that this robustness originates during G‐protein activation. We developed a complete mathematical model of this step, which suggested the ability to compute fractional occupancy depends on the physical interaction between the inhibitory regulator of G‐protein signaling (RGS), Sst2, and the receptor. Accordingly, replacing Sst2 by the heterologous hsRGS4, incapable of interacting with the receptor, abolished robustness. Conversely, forcing hsRGS4:Ste2 interaction restored robustness. Taken together with other results of our work, we conclude that this GPCR pathway computes fractional occupancy because ligand‐bound GPCR–RGS complexes stimulate signaling while unoccupied complexes actively inhibit it. In eukaryotes, many RGSs bind to specific GPCRs, suggesting these complexes with opposing activities also detect fraction occupancy by a ratiometric measurement. Such complexes operate as push‐pull devices, which we have recently described.  相似文献   

19.
20.
In animal olfactory systems, odorant molecules are detected by olfactory receptors (ORs). ORs are part of the G-protein-coupled receptor (GPCR) superfamily. Heterotrimeric guanine nucleotide binding G-proteins (G-proteins) relay signals from GPCRs to intracellular effectors. G-proteins are comprised of three peptides. The G-protein α subunit confers functional specificity to G-proteins. Vertebrate and insect Gα-subunit genes are divided into four subfamilies based on functional and sequence attributes. The nematode Caenorhabditis elegans contains 21 Gα genes, 14 of which are exclusively expressed in sensory neurons. Most individual mammalian cells express multiple distinct GPCR gene products, however, individual mammalian and insect olfactory neurons express only one functional odorant OR. By contrast C. elegans expresses multiple ORs and multiple Gα subunits within each olfactory neuron. Here we show that, in addition to having at least one member of each of the four mammalian Gα gene classes, C. elegans and other nematodes also possess two lineage-specific Gα gene expansions, homologues of which are not found in any other organisms examined. We hypothesize that these novel nematode-specific Gα genes increase the functional complexity of individual chemosensory neurons, enabling them to integrate odor signals from the multiple distinct ORs expressed on their membranes. This neuronal gene expansion most likely occurred in nematodes to enable them to compensate for the small number of chemosensory cells and the limited emphasis on cephalization during nematode evolution. [Reviewing Editor: Dr. John Oakeshott] Damien M. O’Halloran and David A. Fitzpatrick contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号