首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cultured mammalian cells, particularly Chinese hamster ovary (CHO) cells, are widely exploited as hosts for the production of recombinant proteins, but often yields are limiting. Such limitations may be due in part to the misfolding and subsequent degradation of the heterologous proteins. Consequently we have determined whether transiently co‐expressing yeast and/or mammalian chaperones that act to disaggregate proteins, in CHO cell lines, improve the levels of either a cytoplasmic (Fluc) or secreted (Gluc) form of luciferase or an immunoglobulin IgG4 molecule. Over‐expression of the yeast ‘protein disaggregase’ Hsp104 in a CHO cell line increased the levels of Fluc more significantly than for Gluc although levels were not further elevated by over‐expression of the yeast or mammalian Hsp70/40 chaperones. Over‐expression of TorsinA, a mammalian protein related in sequence to yeast Hsp104, but located in the ER, significantly increased the level of secreted Gluc from CHO cells by 2.5‐fold and to a lesser extent the secreted levels of a recombinant IgG4 molecule. These observations indicate that the over‐expression of yeast Hsp104 in mammalian cells can improve recombinant protein yield and that over‐expression of TorsinA in the ER can promote secretion of heterologous proteins from mammalian cells. Biotechnol. Bioeng. 2010; 105: 556–566. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
Chinese hamster ovary cells (CHO) are routinely used in industry to produce recombinant therapeutic proteins and a number of studies have reported increased recombinant mRNA levels at temperatures <37°C. Surprisingly, the effect of reduced temperature on mRNA translation in CHO cells has not been investigated despite this process being highly responsive to environmental stresses. The relationship between low temperature culturing of CHO cells and mRNA translation was therefore investigated using labeling studies and dual luciferase reporter gene technology. Global protein synthetic capacity was not greatly affected at 32°C but was diminished at lower temperatures. The expression of both cap‐dependent and cap‐independent (IRES driven) mRNA translated luciferase reporter gene activity was highest at 32°C on a per cell basis and this was partially accounted for by increased mRNA levels. Importantly, post‐translational events appear to proceed with higher fidelity and accuracy at 32 than 37°C resulting in increased yield of active protein as opposed to an increase in total polypeptide synthesis. Therefore at 32°C recombinant cap‐dependent mRNA translation appears sufficient to maintain recombinant protein yields on a per cell basis and this is associated with improved post‐translational processing. Biotechnol. Bioeng. 2010;105: 215–220. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA‐2, termed CPMV‐HT, in which the sequence to be expressed is positioned between a modified 5′ UTR and the 3′ UTR has been successfully used for the plant‐based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5′ UTR can dramatically influence expression levels, the role of the 3′ UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3′UTR of CPMV RNA‐2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress‐HT‐GFP. The results showed that the presence of a 3′ UTR in the CPMV‐HT system is important for achieving maximal expression levels. Removal of the entire 3′ UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y‐shaped secondary structure formed by nucleotides 125–165 of the 3′ UTR plays a key role in its function; mutations that disrupt this Y‐shaped structure have an effect equivalent to the deletion of the entire 3′ UTR. Our results suggest that the Y‐shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5′ and 3′ UTRs in CPMV‐HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels.  相似文献   

6.
7.
8.
9.
To study how the P19 suppressor of gene‐silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co‐expressed with P19 in an RNAi‐based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102–106) containing different 5′ and 3′ UTRs, designated as vector sets 102–106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5′UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15‐fold (to about 2.3% of TSP) when co‐expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co‐expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I‐64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19‐induced responses.  相似文献   

10.
The promoter and 5′‐untranslated region (5′UTR) play a key role in determining the efficiency of recombinant protein expression in plants. Comparative experiments are used to identify suitable elements but these are usually tested in transgenic plants or in transformed protoplasts/suspension cells, so their relevance in whole‐plant transient expression systems is unclear given the greater heterogeneity in expression levels among different leaves. Furthermore, little is known about the impact of promoter/5′UTR interactions on protein accumulation. We therefore established a predictive model using a design of experiments (DoE) approach to compare the strong double‐enhanced Cauliflower mosaic virus 35S promoter (CaMV 35SS) and the weaker Agrobacterium tumefaciens Ti‐plasmid nos promoter in whole tobacco plants transiently expressing the fluorescent marker protein DsRed. The promoters were combined with one of three 5′UTRs (one of which was tested with and without an additional protein targeting motif) and the accumulation of DsRed was measured following different post‐agroinfiltration incubation periods in all leaves and at different leaf positions. The model predictions were quantitative, allowing the rapid identification of promoter/5′UTR combinations stimulating the highest and quickest accumulation of the marker protein in all leaves. The model also suggested that increasing the incubation time from 5 to 8 days would reduce batch‐to‐batch variability in protein yields. We used the model to identify promoter/5′UTR pairs that resulted in the least spatiotemporal variation in expression levels. These ideal pairs are suitable for the simultaneous, balanced production of several proteins in whole plants by transient expression. Biotechnol. Bioeng. 2013; 110: 471–482. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
The gradual loss of recombinant protein expression in CHO cell lines during prolonged subculture is a common issue, referred to as instability, which seriously affects the industrial production processes of therapeutic proteins. Loss of recombinant gene copies, due to the genetic instability of CHO cells, and epigenetic silencing of transgene sequences, are the main reported causes of production instability. To increase our understanding on the molecular mechanisms inherent to CHO cells involved in production instability, we explored the molecular features of stable and unstable antibody producing cell lines obtained without gene amplification, to exclude the genetic instability induced by the gene amplification process. The instability of recombinant antibody production during long-term culture was caused by a 48–53 % decrease in recombinant mRNA levels without significant loss of recombinant gene copies, but accompanied by a ~45 % decrease in histone H3 acetylation (H3ac). Thus, our results suggest a critical role of H3ac in the stability of recombinant protein production.  相似文献   

13.
Directly using the promoter associated with 5′‐untranslated region of a high‐protein‐abundance gene from the genome may cause low expression activity of an expression system. A bicistronic expression part containing the short 5′ coding sequence of the source gene and an embedded Shine–Dalgarno sequence can cause higher expression levels of the recombinant gene in a bicistronic cassette. Here, we evaluated two methods to construct expression parts and exploited genomic sequence sources to provide specific functional sequences to complete the expression system. The architecture of the bicistronic part increased the expression levels of target genes and performed more reliably than conventional expression parts with the same promoter and 5′ untranslated region. For Corynebacterium glutamicum, the strongest bicistronic part, HP‐BEP4, was obtained from a heterologous sequence source, leading to a 2.24‐fold increase in the expression level of fluorescent protein over constitutively expressed pXMJ19 or the production of more than 100 mg/L single‐chain variable fragment (scFv). It could meet the needs of overexpressing key genes in C. glutamicum.  相似文献   

14.
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO‐DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO‐DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA‐based CHO‐DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self‐organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up‐regulating NCK1 and down‐regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial‐ and endoplasmic reticulum‐mediated cell death pathways by up‐regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1026–1038, 2015  相似文献   

15.
16.
17.
Objectives: MicroRNAs (miRNAs) are small functional RNAs that regulate mRNAs for degradation or translational suppression. In the present study, we aimed to reveal functional importance of miRNA‐494 (miR‐494) in A549 human lung cancer cells. Materials and methods: We established A549 cells that constitutively expressed miR‐494. Next, we sought to investigate insulin‐like growth factor 2 mRNA‐binding protein 1 (IGF2BP1) mRNA as an miR‐494 target. For this, we constructed a reporter plasmid bearing potential miR‐494 binding sequences derived from the 3′‐untranslated region (3′‐UTR) of IGF2BP1 mRNA in the 3′‐UTR of the luciferase gene. Results: Through comparison between miR‐494 expressing cells and control cells, we revealed that miR‐494 suppressed cell proliferation and colony forming activity, and induced senescence. Reporter activity was inhibited by miR‐494. In addition, IGF2BP1 mRNA levels were down‐regulated in A549 cells that constitutively expressed miR‐494. IGF2BP1 has been shown to bind and suppress IGF2 mRNA, and this could be a reason why IGF2BP1 can regulate cell function. Therefore, we analysed IGF2 mRNA levels and revealed that IGF2 was up‐regulated in A549 cells that constitutively expressed miR‐494. Finally, elevated IGF2 mRNA levels in A549 cells that constitutively expressed miR‐494 were suppressed to basal level by an miR‐494 inhibitor. Conclusions: Taken together, IGF2BP1 and its downstream target IGF2 could be a crucial axis for miR‐494 in regulation of the destiny of A549 cells.  相似文献   

18.
19.
20.
MicroRNAs (miRNAs) have emerged as promising targets for engineering of CHO cell factories to enhance recombinant protein productivity. Manipulation of miRNA levels in CHO cells have been shown to improve product yield by increasing proliferation and specific productivity (qP), resisting apoptosis and enhancing oxidative metabolism. The authors previously demonstrated that over‐expressing miR‐92a results in increases in qP and titer of CHO‐IgG cells. However, the mechanisms by which miR‐92a enhances qP in CHO cells are still uninvestigated. Here, the authors report the identification of insig1, a regulator of cholesterol biosynthesis, as a target of miR‐92a using computational prediction. Both transient and stable over‐expression of miR‐92a decreased the expression levels of insig1. Insig1 was further validated as a target of miR‐92a using 3' UTR reporter assay. Intracellular cholesterol concentration of two high‐producing miR‐92a clones were significantly increased by ≈30% compared to the blank‐transfected pool. Relative Golgi surface area was also found to be 18–26% higher in these clones. Our findings suggest that miR‐92a may affect cholesterol metabolism by repressing insig1, resulting in raised intracellular cholesterol levels and Golgi volume and hence enhanced protein secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号