首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞失去连接和极性转变为间质细胞的过程,这一现象普遍存在于胚胎发育、创伤愈合、器官纤维化以及肿瘤转移.在胚胎早期发育和晚期发育过程,例如着床、原肠运动、心血管发育等事件中有EMT和间质上皮转化(mesenchymal-ep...  相似文献   

3.
4.
5.
The integrity of cell-cell contacts such as adherens junctions (AJ) and tight junctions (TJ) is essential for the function of epithelia. During carcinogenesis, the increased motility and invasiveness of tumor cells reflect the loss of characteristic epithelial features, including cell adhesion. While beta-catenin, a component of AJ, plays a well characterized dual role in cell adhesion and signal transduction leading to epithelial cell transformation, little is known about possible roles of tight junction components in signaling processes. Here we show that mutants of the TJ protein zonula occludens protein-1 (ZO-1), which encode the PDZ domains (ZO-1 PDZ) but no longer localize at the plasma membrane, induce a dramatic epithelial to mesenchymal transition (EMT) of Madin-Darby canine kidney I (MDCKI) cells. The observed EMT of these MDCK-PDZ cells is characterized by a repression of epithelial marker genes, a restricted differentiation potential and a significantly induced tumorigenicity. Intriguingly, the beta-catenin signaling pathway is activated in the cells expressing the ZO-1 PDZ protein. Ectopic expression of the adenomatous polyposis coli tumor suppressor gene, known to down-regulate activated beta-catenin signaling, reverts the transformed fibroblastoid phenotype of MDCK-PDZ cells. Thus, cytoplasmic localization of the ZO-1 PDZ domains induces an EMT in MDCKI cells, most likely by modulating beta-catenin signaling.  相似文献   

6.
Du R  Sun W  Xia L  Zhao A  Yu Y  Zhao L  Wang H  Huang C  Sun S 《PloS one》2012,7(2):e30771

Background

Hypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown.

Methodology/Principal Findings

miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT.

Conclusions/Significance

Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling.  相似文献   

7.
Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.  相似文献   

8.
9.
10.
Patients with ovarian cancer frequently develop acquired drug resistance after the long-term chemotherapy, leading to disease progression. Enhanced epithelial–mesenchymal transition (EMT) has been implicated in chemoresistance of ovarian cancer cells; however, the molecular mechanisms involved are largely undefined. Pyruvate dehydrogenase kinase 1 (PDK1), a key regulatory enzyme in glucose metabolism, has been recognized as a gatekeeper of the Warburg effect, a hallmark of cancer. In this study, the function of PDK1 in cisplatin resistance of ovarian cancer in terms of growth and EMT was investigated. PDK1 was upregulated in cisplatin-resistant ovarian cancer cells. PDK1 knockdown in resistant cells led to increased sensitivity to cisplatin-induced cell death and apoptosis. PDK1 downregulation also reversed the EMT and cell motility in cisplatin-resistant cells. In a mouse xenograft model, tumors derived from PDK1-silenced ovarian cancer cells exhibited decreased tumor growth and EMT compared with control after the cisplatin treatment. Mechanistically, PDK1 overexpression led to increased phosphorylation of EGFR, and blocking EGFR kinase activity by erlotinib reversed cisplatin resistance induced by PDK1 overexpression. Furthermore, in patients with ovarian cancer, higher PDK1 and p-EGFR levels were associated with chemoresistance. These results supported that PDK1 contributes to chemoresistance of ovarian cancer by activating EGFR. Therefore, PDK1 may serve as a promising target to combat chemoresistance of ovarian cancer.  相似文献   

11.
FGF10 plays an important role in the morphogenesis of several tissues by control of mesenchymal-to-epithelial signaling. In the pancreas, mesenchymal FGF10 is required to maintain the Pdx1-expressing epithelial progenitor cell population, and in the absence of FGF10 signaling, these cells fail to proliferate. Ectopic expression of FGF10 in the pancreatic epithelium caused increased proliferation of pancreatic progenitor cells and abrogation of pancreatic cell differentiation of all cell types. A hyperplastic pancreas consisting of undifferentiated cells expressing Pdx1, Nkx6.1, and cell adhesion markers normally characterizing early pancreatic progenitor cells resulted. Differentiation was attenuated even as proliferation of the pancreatic cells slowed during late gestation, suggesting that the trophic effect of FGF10 was independent of its effects upon cell differentiation. The FGF10-positive pancreatic cells expressed Notch1 and Notch2, the Notch-ligand genes Jagged1 and Jagged2, as well as the Notch target gene Hes1. This activation of Notch is distinct from the previously recognized mechanism of lateral inhibition. These data suggest that FGF10 signaling serves to integrate cell growth and terminal differentiation at the level of Notch activation, revealing a novel second role of this key signaling system during pancreatic development.  相似文献   

12.
Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in ?future.  相似文献   

13.
Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in �future.  相似文献   

14.
Notch is an ancient cell signaling system that regulates cell fate specification, stem cell maintenance and initiation of differentiation in embryonic and postnatal tissues.1 Alteration of these functions in the adult have been associated to various types of cancer in which Notch may act as an oncogen or as a tumor suppressor.2,3 As occurs during development, Notch cooperates with other signaling pathways in the transformation process.2,4 Notch has recently been shown to promote epithelial-to-mesenchymal transition (EMT) during cardiac valve formation, via snail induction and subsequent cadherin downregulation.5 One implication of this work is that Notch acting through a similar mechanism, may also be involved in the EMT process that occurs during tumor progression and converts polarized epithelial cells into motile, invasive cells.6  相似文献   

15.
16.
Pancreatic cancer is one of the deadliest cancers due to early rapid metastasis and chemoresistance. Recently, epithelial to mesenchymal transition (EMT) was shown to play a key role in the pathogenesis of pancreatic cancer. To understand the role of caveolin-1 (Cav-1) in EMT, we over-expressed Cav-1 in a pancreatic cancer cell line, Panc 10.05, that does not normally express Cav-1. Here, we show that Cav-1 expression in pancreatic cancer cells induces an epithelial phenotype and promotes cell-cell contact, with increased expression of plasma membrane bound E-cadherin and beta-catenin. Mechanistically, Cav-1 induces Snail downregulation and decreased activation of AKT, MAPK and TGF-beta-Smad signaling pathways. In vitro, Cav-1 expression reduces cell migration and invasion, and attenuates doxorubicin-chemoresistance of pancreatic cancer cells. Importantly, in vivo studies revealed that Cav-1 expression greatly suppresses tumor formation in a xenograft model. Most interestingly, Panc/Cav-1 tumors displayed organized nests of differentiated cells that were totally absent in control tumors. Confirming our in vitro results, these nests of differentiated cells showed reexpression of E-cadherin and beta-catenin at the cell membrane. Thus, we provide evidence that Cav-1 functions as a crucial modulator of EMT and cell differentiation in pancreatic cancer.  相似文献   

17.
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.  相似文献   

18.
Cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT)‐type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms – particularly glycolysis – involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine‐resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2‐deoxy‐D‐glucose (2‐DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N‐acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2O2 produced changes similar to those of 2‐DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin‐like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2‐DG and H2O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis‐ROS‐DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer.  相似文献   

19.
Hepatocellular carcinoma (HCC) cells undergo the epithelial–mesenchymal transition (EMT) during chemotherapy, which reduces the efficacy of doxorubicin-based chemotherapy. We investigated N1-guanyl-1,7-diaminoheptane (GC7) which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation; eIF5A2 is associated with chemoresistance. GC7 enhanced doxorubicin cytotoxicity in epithelial HCC cells (Huh7, Hep3B and HepG2) but had little effect in mesenchymal HCC cells (SNU387, SNU449). GC7 suppressed the doxorubicin-induced EMT in epithelial HCC cells; knockdown of eIF5A2 inhibited the doxorubicin-induced EMT and enhanced doxorubicin cytotoxicity. GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in HCC by inhibiting eIF5A2 activation and preventing the EMT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号