首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Gossypium hirsutum L. is a widely cultivated species characterized by its high yield and wide environmental adaptability, while Gossypium barbadense is well known for its superior fiber quality. In the present report, we, for the first time, developed G. hirsutum chromosome segment introgression lines (ILs) in a G. barbadense background (GhILs_Gb) and genetically dissected the inheritance of lint yield and fiber quality of G. hirsutum in G. barbadense background. The GhILs_Gb contains introgressed segments spanning 4121.20 cM, which represents 82.20% of the tetraploid cotton genome, with an average length of 18.65 cM. A total of 39 quantitative trait loci (QTLs) for six traits are identified in this IL population planted in Xinjiang. Four QTL clusters are detected. Of them, however, three clusters have deleterious effects on fiber length and strength and boll weight, and only one cluster on Chr. D9 can be used in marker-assisted selection (MAS) to increase lint percentage and decrease micronaire value in G. barbadense. QTL mapping showed that most of yield-related QTLs detected have positive effects and increase lint yield in G. barbadense, while most of fiber quality-related QTLs have deleterious effects except for micronaire. It suggested that G. hirsutum evolved to have a high lint yield. Several lines improved in lint percentage and boll size in G. barbadense by introgressed one fragment of G. hirsutum have been developed from the GhILs_Gb. The ILs developed, and the analyses presented here will enhance the understanding of the genetics of lint yield and fiber quality in G. hirsutum and facilitate further molecular breeding to improve lint yield in G. barbadense.  相似文献   

2.
Shoot fly is a major insect pest of sorghum damaging early crop growth, establishment and productivity. Host plant resistance is an efficient approach to minimize yield losses due to shoot fly infestation. Seedling leaf blade glossiness and trichome density are morphological traits associated with shoot fly resistance. Our objective was to identify and evaluate QTLs for glossiness and trichome density using- i) 1894 F2s, ii) a sub-set of 369 F2-recombinants, and iii) their derived 369 F2:3 progenies, from a cross involving introgression lines RSG04008-6 (susceptible)?×?J2614-11 (resistant). The QTLs were mapped to a 37–72 centimorgan (cM) or 5–15 Mb interval on the long arm of sorghum chromosome 10 (SBI-10L) with flanking markers Xgap001 and Xtxp141. One QTL each for glossiness (QGls10) and trichome density (QTd10) were mapped in marker interval Xgap001-Xnhsbm1044 and Xisep0630-Xtxp141, confirming their loose linkage, for which phenotypic variation accounted for ranged from 2.29 to 11.37 % and LOD values ranged from 2.03 to 24.13, respectively. Average physical map positions for glossiness and trichome density QTLs on SBI-10 from earlier studies were 4 and 2 Mb, which in the present study were reduced to 2 Mb and 800 kb, respectively. Candidate genes Glossy15 (Sb10g025053) and ethylene zinc finger protein (Sb10g027550) falling in support intervals for glossiness and trichome density QTLs, respectively, are discussed. Also we identified a sub-set of recombinant population that will facilitate further fine mapping of the leaf blade glossiness and trichome density QTLs on SBI-10.  相似文献   

3.

Key message

Co-localized intervals and candidate genes were identified for major and stable QTLs controlling pod weight and size on chromosomes A07 and A05 in an RIL population across four environments.

Abstract

Cultivated peanut (Arachis hypogaea L.) is an important legume crops grown in > 100 countries. Hundred-pod weight (HPW) is an important yield trait in peanut, but its underlying genetic mechanism was not well studied. In this study, a mapping population (Xuhua 13 × Zhonghua 6) with 187 recombinant inbred lines (RILs) was developed to map quantitative trait loci (QTLs) for HPW together with pod length (PL) and pod width (PW) by both unconditional and conditional QTL analyses. A genetic map covering 1756.48 cM was constructed with 817 markers. Additive effects, epistatic interactions, and genotype-by-environment interactions were analyzed using the phenotyping data generated across four environments. Twelve additive QTLs were identified on chromosomes A05, A07, and A08 by unconditional analysis, and five of them (qPLA07, qPLA05.1, qPWA07, qHPWA07.1, and qHPWA05.2) showed major and stable expressions in all environments. Conditional QTL mapping found that PL had stronger influences on HPW than PW. Notably, qHPWA07.1, qPLA07, and qPWA07 that explained 17.93–43.63% of the phenotypic variations of the three traits were co-localized in a 5 cM interval (1.48 Mb in physical map) on chromosome A07 with 147 candidate genes related to catalytic activity and metabolic process. In addition, qHPWA05.2 and qPLA05.1 were co-localized with minor QTL qPWA05.2 to a 1.3 cM genetic interval (280 kb in physical map) on chromosome A05 with 12 candidate genes. This study provides a comprehensive characterization of the genetic components controlling pod weight and size as well as candidate QTLs and genes for improving pod yield in future peanut breeding.
  相似文献   

4.

Key message

QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding.

Abstract

Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
  相似文献   

5.

Key message

QTL mapping using NGS-assisted BSA was successfully applied to an F 2 population for downy mildew resistance in cucumber. QTLs detected by NGS-assisted BSA were confirmed by conventional QTL analysis.

Abstract

Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive foliar diseases in cucumber. QTL mapping is a fundamental approach for understanding the genetic inheritance of DM resistance in cucumber. Recently, many studies have reported that a combination of bulked segregant analysis (BSA) and next-generation sequencing (NGS) can be a rapid and cost-effective way of mapping QTLs. In this study, we applied NGS-assisted BSA to QTL mapping of DM resistance in cucumber and confirmed the results by conventional QTL analysis. By sequencing two DNA pools each consisting of ten individuals showing high resistance and susceptibility to DM from a F2 population, we identified single nucleotide polymorphisms (SNPs) between the two pools. We employed a statistical method for QTL mapping based on these SNPs. Five QTLs, dm2.2, dm4.1, dm5.1, dm5.2, and dm6.1, were detected and dm2.2 showed the largest effect on DM resistance. Conventional QTL analysis using the F2 confirmed dm2.2 (R 2 = 10.8–24 %) and dm5.2 (R 2 = 14–27.2 %) as major QTLs and dm4.1 (R 2 = 8 %) as two minor QTLs, but could not detect dm5.1 and dm6.1. A new QTL on chromosome 2, dm2.1 (R 2 = 28.2 %) was detected by the conventional QTL method using an F3 population. This study demonstrated the effectiveness of NGS-assisted BSA for mapping QTLs conferring DM resistance in cucumber and revealed the unique genetic inheritance of DM resistance in this population through two distinct major QTLs on chromosome 2 that mainly harbor DM resistance.
  相似文献   

6.
In order to detect genomic regions with different effects for some of the physiological and biochemical traits of wheat, four experiments were conducted at Research Farm of Agricultural and Natural Resources Research Center of Zabol in 2015–2016 and 2016–2017 growing seasons. The experiments were carried out using four alpha lattice designs with two replications under non-stress and terminal heat stress conditions. Plant materials used in this study included 167 recombinant inbred lines and their parents (‘SeriM82’ and ‘Babax’). Six traits including grain yield (GY), proline content (PRO), water soluble carbohydrates (WSC), maximum efficiency of photosystem II (Fv/Fm), cytoplasmic membrane stability (CMS) and chlorophyll content (CHL) were evaluated. Genetic linkage map consisted of 211 AFLP marker, 120 SSR marker and 144 DArT markers with 1864 cm length and 4.4 cm mean distance. QTL analysis was carried out using a mixed-model-based composite interval mapping (MCIM) method. By the combined analysis of normal phenotypic values, 27 additive QTLs and five pairs of epistatic effects were identified for studied traits, among which two additive and one epistatic QTL showed significant QTL?×?environment interactions. By the combined analysis of stress phenotypic values, a total of 26 QTLs with additive effects and 5 epistatic QTLs were detected, among which one additive and one epistatic QTL showed QTL?×?environment interactions. Six QTLs with major effects (QGY-2B, QGY-2D, QPro-5B, QWSC-4A, QFv/Fm-6A and QCMS-4B), which were common between two conditions could be useful for marker-assisted selection (MAS) in order to develop heat tolerant and high-performance wheat varieties.  相似文献   

7.
A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 F12 recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))–RM208 (35,520,147 bp), RM218 (8,375,236 bp)–RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)–RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs—qOSR2, qOSR3, and qOSR8—were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.  相似文献   

8.

Key message

In this study we mapped the QTL Qgls8 for gray leaf spot (GLS) resistance in maize to a ~130 kb region on chromosome 8 including five predicted genes.

Abstract

In previous work, using near isogenic line (NIL) populations in which segments of the teosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot (GLS) resistance. We identified alternate teosinte alleles at this QTL, one conferring increased GLS resistance and one increased susceptibility relative to the B73 allele. Using segregating populations derived from NIL parents carrying these contrasting alleles, we were able to delimit the QTL region to a ~130 kb (based on the B73 genome) which encompassed five predicted genes.
  相似文献   

9.
Small brown planthopper (SBPH) and its transmitted rice black-streaked dwarf virus disease (RBSDVD) cause serious damage to rice (Oryza sativa L.) production. Though breeding of resistant cultivars is believed to be one of the most important strategies for RBSDVD management, few high-resistance lines have been found to date. In the present study, we identified an indica variety, 9194, that is highly resistant to RBSDVD and analyzed the quantitative trait loci (QTLs) underlying this resistance . In total, four QTLs for RBSDVD resistance, viz. qRBSDV3, qRBSDV6, qRBSDV9, and qRBSDV11, were identified. Among them, qRBSDV6, qRBSDV9, and qRBSDV11 with LOD (logarithm [base 10] of odds) scores of 4.42–4.48, 2.11–7.26, and 5.01–7.16 were repeatedly detected in 2 years, accounting for 10.3–16.7%, 8.3–35.5%, and 20.0–31.1% of the total phenotypic variation, respectively. Further, introgression of single- or multiple-resistance QTLs into a susceptible rice variety by marker-assisted selection (MAS) indicated that stacking the QTLs could progressively enhance RBSDVD resistance, suggesting that these QTLs act additively. The same population was also used for QTL mapping of SBPH resistance. Four QTLs, viz. qSBPH1, qSBPH5, qSBPH8, and qSBPH9, with LOD scores of 2.72, 2.78, 2.15, and 2.85 were detected, explaining 13.7%, 11.0%, 12.0%, and 21.0% of the phenotypic variation, respectively. The identification of RBSDVD and SBPH resistance QTLs, and the development of single and multiple genes with pyramided lines, in this study provides innovative resources for molecular breeding of resistant rice cultivars.  相似文献   

10.
Earliness of flowering and maturity and high seed yield are important objectives of breeding spring Brassica napus canola. Previously, we have introgressed earliness of flowering from Brassica oleracea into spring B. napus canola through interspecific crossing between these two species. In this paper, we report quantitative trait locus (QTL) mapping of days to flower and seed yield by use of publicly available markers and markers designed based on flowering time genes and a doubled haploid population, derived from crossing of the spring canola parent and an early flowering line developed from a B. napus × B. oleracea cross, tested in nine field trials for over 5 years. Five genomic regions associated with days to flower were identified on C1, C2, C3, and C6 of which the single QTL of C1 was detected in all trials; in all cases, the allele introgressed from B. oleracea reduced the number of days to flower. BLASTn search in the Brassica genomes located the physical position of the QTL markers and identified putative flowering time genes in these regions. In the case of seed yield, ten QTL from eight linkage groups were detected; however, none could be consistently detected in all trials. The QTL region of C1 associated with days to flower did not show significant association with seed yield in more than 80% of the field trials; however, in a single trial, the allele introgressed from B. oleracea exerted a negative effect on seed yield. Thus, the genomic regions and molecular markers identified in this research could potentially be used in breeding for the development of early flowering B. napus canola cultivars without affecting seed yield in a majority of the environments.  相似文献   

11.
Shoot fresh weight (SFW) is one of the parameters, used to estimate the total plant biomass yield in soybean. In the present study, a total of 188 F5:8 recombinant inbred lines (RIL) derived from an interspecific cross of PI 483463 (Glycine soja) and Hutcheson (Glycine max) were investigated for SFW variation in the field for three consecutive years. The parental lines and RILs were phenotyped in the field at the R6 stage by measuring total biomass in kg/plot to identify the QTLs for SFW. Three QTLs qSFW6_1, qSFW15_1, and qSFW19_1 influencing SFW were identified on chromosome 6, 15, and 19, respectively. The QTL qSFW19_1 flanked between the markers BARC-044913-08839 and BARC-029975-06765 was the stable QTL expressed in all the three environments. The phenotypic variation explained by the QTLs across all environments ranged from 6.56 to 21.32 %. The additive effects indicated contribution of alleles from both the parents and additive × environment interaction effects affected the expression of SFW QTL. Screening of the RIL population with additional SSRs from the qSFW19_1 region delimited the QTL between the markers SSR19-1329 and BARC-29975-06765. QTL mapping using bin map detected two QTLs, qSFW19_1A and qSFW19_1B. The QTL qSFW19_1A mapped close to the Dt1 gene locus, which affects stem termination, plant height, and floral initiation in soybean. Potential candidate genes for SFW were pinpointed, and sequence variations within their sequences were detected using high-quality whole-genome resequencing data. The findings in this study could be useful for understanding genetic basis of SFW in soybean.  相似文献   

12.

Key message

Using QTL analysis and fine mapping, the novel recessive gene xa44(t) conferring resistance to BB was identified and the expression level of the gene was confirmed through qRT-PCR analysis.

Abstract

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major factor causing rice yield loss in most rice-cultivating countries, especially in Asia. The deployment of cultivars with resistance to BB is the most effective method to control the disease. However, the evolution of new Xoo or pathotypes altered by single-gene-dependent mutations often results in breakdown of resistance. Thus, efforts to identify novel R-genes with sustainable BB resistance are urgently needed. In this study, we identified three quantitative trait loci (QTLs) on chromosomes 1, 4, and 11, from an F2 population of 493 individuals derived from a cross between IR73571-3B-11-3-K3 and Ilpum using a 7K SNP chip. Of these QTLs, one major QTL, qBB_11, on chromosome 11 explained 61.58% of the total phenotypic variance in the population, with an LOD value of 113.59, based on SNPs 11964077 and 11985463. The single major R-gene, with recessive gene action, was designated xa44(t) and was narrowed down to a 120-kb segment flanked within 28.00 Mbp to 28.12 Mbp. Of nine ORFs present in the target region, two ORFs revealed significantly different expression levels of the candidate genes. These candidate genes (Os11g0690066 and Os11g0690466) are described as “serine/threonine protein kinase domain containing protein” and “hypothetical protein,” respectively. The results will be useful to further understand BB resistance mechanisms and provide new sources of resistance, together with DNA markers for MAS breeding to improve BB resistance in rice.
  相似文献   

13.
Ceratocystis wilt caused by the fungus Ceratocystis fimbriata, is currently one of the major diseases in commercial plantations of Eucalyptus trees in Brazil. Deployment of resistant genotypes has been the main strategy for effective disease management. The present study aimed at identifying genomic regions underlying the genetic control of resistance to Ceratocystis wilt in Eucalyptus by quantitative trait loci (QTL) mapping in an outbred hybrid progeny derived from a cross between (Eucalyptus dunnii × Eucalyptus grandis) × (Eucalyptus urophylla × Eucalyptus globulus). A segregating population of 127 individuals was phenotyped for resistance to Ceratocystis wilt using controlled inoculation under a completely randomized design with five clonal replicates per individual plant. The phenotypic resistance response followed a continuous variation, enabling us to analyze the trait in a quantitative manner. The population was genotyped with 114 microsatellite markers and 110 were mapped with an average interval of 12.3 cM. Using a sib-pair interval-mapping approach five QTLs were identified for disease resistance, located on linkage groups 1, 3, 5, 8, and 10, and their estimated individual heritability ranged from 0.096 to 0.342. The QTL on linkage group 3 overlaps with other fungal disease-resistance QTLs mapped earlier and is consistent with the annotation of several disease-resistance genes on this chromosome in the E. grandis genome. This is the first study to identify and attempt to quantify the effects of QTLs associated with resistance to Ceratocystis wilt in Eucalyptus.  相似文献   

14.
Seedlessness, flavor, and color are top priorities for mandarin (Citrus reticulata Blanco) cultivar improvement. Given long juvenility, large tree size, and high breeding cost, marker-assisted selection (MAS) may be an expeditious and economical approach to these challenges. The objectives of this study were to construct high-density mandarin genetic maps and to identify single nucleotide polymorphism (SNP) markers associated with fruit quality traits. Two parental genetic maps were constructed from an F1 population derived from ‘Fortune’ × ‘Murcott’, two mandarin cultivars with distinct fruit characters, using a 1536-SNP Illumina GoldenGate assay. The map for ‘Fortune’ (FOR) consisted of 189 SNPs spanning 681.07 cM and for ‘Murcott’ (MUR) consisted of 106 SNPs spanning 395.25 cM. Alignment of the SNP sequences to the Clementine (Citrus clementina) genome showed highly conserved synteny between the genetic maps and the genome. A total of 48 fruit quality quantitative trait loci (QTLs) were identified, and ten of them stable over two or more samplings were considered as major QTLs. A cluster of QTLs for flavedo color space values L, a, b, and a/b and juice color space values a and a/b were detected in a single genomic region on linkage group 4. Two carotenoid biosynthetic pathway genes, pds1 and ccd4, were found within this QTL interval. Several SNPs were potentially useful in MAS for these fruit characteristics. QTLs were validated in 13 citrus selections, which may be useful in further validation and tentative MAS in mandarin fruit quality improvement.  相似文献   

15.
Soybean is important throughout the world not only due to the high seed protein and oil but also owing to the seed isoflavone. To improve the isoflavone concentration in seeds, detecting and mining the stable and reliable quantitative trait loci (QTLs) and related genes in multiple environments and genetic backgrounds become more and more important. In view of this, a F6:7 recombinant inbred line (RIL) population of 345 lines derived from a cross between Zheng 92116 and Liaodou14 (ZL) was genotyped using 1739 polymorphic SNP and 127 SSR markers in this study and was phenotyped for individual and total seed isoflavone in four environments over 2 years. In total, 48 additive QTLs, which explained 3.00–29.83% of seed isoflavone variation, were identified. Of them, eight QTLs (qDA1_1, qGA1_1, qTIA1_1, qDA1_2, qGA1_2, qTIA1_2, qDA1_3, qTIA1_3) with phenotypic variation explained (PVE) ranging from 14.09 to 28.59% for daidzin, genistin, and total isoflavone were located on the same region of linkage group (LG) A1. These QTLs were further verified in another RIL population derived from Zheng 92116 × Qihuang 30 (ZQ). Meanwhile, the other four overlapping QTLs on linkage group B1, which were associated with glycitin content (qGLB1_1, qGLB1_2, qGLB1_3, qGLB1_4) and explained 16.52 to 29.83% of phenotypic variation, were also verified using the ZQ population. Moreover, the individuals with different genotypes at the common flanking SNP markers for these QTLs on LGs A1 and B1 in the two mapping populations showed significant different isoflavone content, which further validate the QTL mapping results. And also, some candidate genes might participate in the isoflavone biosynthesis processes were found in these stable QTL regions. Thus, the novel and stable QTLs identified and verified in this study could be applied in marker-assisted selection breeding or map-based candidate genes cloning in soybean seed isoflavone genetic improvement in future.  相似文献   

16.
A mapping population of 126 doubled haploid (DH) lines derived from a cross between the English winter wheat cultivars Spark and Rialto was evaluated for response to Puccinia graminis f. sp. tritici in the greenhouse and in artificially inoculated field plots at two locations over 3 years (2011, 2012 and 2013). Genetic analysis indicated the involvement of two seedling genes (Sr5 and Sr31, contributed by Rialto) and three adult plant resistance genes. QTL analyses of field data showed the involvement of three consistent effects QTL on chromosome arms 1BS (contributed by Rialto), and 3BS and chromosome 5A (contributed by Spark) in the observed resistance to stem rust. These QTLs explained average phenotypic variation of 78.5, 9.0 and 5.9 %, respectively. With the presence of virulence for Sr5 and absence of Sr31 virulence in the field, the QTL detected on 1BS (QSr.sun-1BS) was attributed to the major seedling resistance gene Sr31. The QTL located on chromosome arm 3BS (QSr.sun-3BS) was closely associated with SSR marker gwm1034, and the QTL detected on 5A (QSr.sun-5A) was closely linked with SSR marker gwm443. DH lines carrying the combination of QSr.sun-3BS and QSr.sun-5A exhibited lower stem rust responses indicating the additive effects of the two APR genes in reducing disease severity. The markers identified in this study can be useful in pyramiding these QTLs with other major or minor genes and marker assisted selection for stem rust resistance in wheat.  相似文献   

17.
Grain chalkiness is a highly undesirable trait affecting rice grain quality and milled rice yield. In order to clarify the genetic basis of chalkiness, a recombinant inbred line population (RIL) derived from a cross between Beilu130 (a japonica cultivar with high chalkiness) and Jin23B (an indica cultivar with low chalkiness) was developed for quantitative trait locus (QTL) mapping. A total of 10 QTLs for white belly rate (WBR) and white core rate (WCR) were detected on eight different chromosomes over 2 years. Two QTLs for WBR (qWBR2 and qWBR5) showed similar chromosomal locations with GW2 and qSW5/GW5, which have been cloned previously to control the grain width and should be the right candidate genes. Three novel minor QTLs controlling WCR, qWCR1, qWCR3, and qWCR4 were further validated in near isogenic F2 populations (NIL-F2) and explained 26.1, 18.3, and 21.1% of the phenotypic variation, respectively. These QTLs could be targets for map-based cloning of the candidate genes to elucidate the molecular mechanism of chalkiness and for marker-assisted selection (MAS) in rice grain quality improvement.  相似文献   

18.
Starch paste viscosity properties are widely used as important indicators for quality estimation in waxy maize. To elucidate the genetic basis of paste viscosity characteristics of waxy maize, seven parameters from the rapid visco analyzer (RVA) profile were analyzed for quantitative trait loci (QTLs) in this study, using a recombinant inbred line population derived from a cross between the inbred lines Tongxi5 and Hengbai522. A high-density linkage map was constructed using 2703 bin markers, covering 1876.20 cM of the whole genome with an average genetic distance of 0.73 cM between adjacent bin markers. Seventy-two QTLs were detected for RVA parameters across 3 years, of which 17 could be identified in 2 years, and 6 identified in all 3 years. Eight QTL clusters were observed to be co-associated with two or more RVA parameters. Three major QTLs, qPV4-1, qTV4-1, and qFV5-2, which explained over 10% of the phenotypic variation, were stably mapped to the chromosomes 4 or 5 in all years. Based on functional annotations, two genes were considered as potential candidate genes for the identified major QTLs. The QTLs and candidate genes identified in this study will be useful for further understanding of the genetic architecture of starch paste viscosity characteristics in waxy maize, and may facilitate molecular breeding for grain quality improvement in breeding programs, and simultaneously provide a basis for cloning of the genes underlying these QTLs.  相似文献   

19.
Specific-locus amplified fragment sequencing is a high-resolution method for genetic mapping, genotyping, and single nucleotide polymorphism (SNP) marker discovery. Previously, a major QTL for downy mildew resistance, BraDM, was mapped to linkage group A08 in a doubled-haploid population derived from Chinese cabbage lines 91–112 and T12–19. The aim of the present study was to improve the linkage map and identify the genetic factors involved in downy mildew resistance. We detected 53,692 high quality SLAFs, of which 7230 were polymorphic, and 3482 of the polymorphic markers were used in genetic map construction. The final map included 1064 bins on ten linkage groups and was 858.98 cM in length, with an average inter-locus distance of 0.81 cM. We identified six QTLs that are involved in downy mildew resistance. The four major QTLs, sBrDM8, yBrDM8, rBrDM8, and hBrDM8, for resistance at the seedling, young plant, rosette, and heading stages were mapped to A08, and are identical to BraDM. The two minor resistance QTLs, rBrDM6 (A06) and hBrDM4 (A04), were active at the rosette and heading stages. The major QTL sBrDM8 defined a physical interval of ~228 Kb on A08, and a serine/threonine kinase family gene, Bra016457, was identified as the possible candidate gene. We report here the first high-density bin map for Chinese cabbage, which will facilitate mapping QTLs for economically important traits and SNP marker development. Our results also expand knowledge of downy mildew resistance in Chinese cabbage and provide three SNP markers (A08-709, A08-028, and A08-018) that we showed to be effective when used in MAS to breed for downy mildew resistance in B. rapa.  相似文献   

20.

Key message

Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75.

Abstract

Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar ‘Forno’ continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two ‘Forno’ QTLs into the leaf rust-susceptible Swiss winter wheat cultivar ‘Arina’. The resulting backcross line ‘ArinaLrFor’ showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. ‘Chinese Spring’ and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号