首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of NaCl and Na2SO4 on photosynthetic pigments, malondialdehyde (MDA), Rubisco activity and superoxide dismutase (SOD) activity were investigated in Kalidium foliatum (Pall.) Moq., which is distributed in the saline soil of Hetao irrigation area in Inner Mongolia China. The K. foliatum plants were treated with NaCl (0, 100, 250, 400 and 500 mM), Na2SO4 (0, 100, 250, 400 and 500 mM) and NaCl + Na2SO4 (1: 1, v/v) (0, 100, 250, 400 and 500 mM of Na+ concentration, 0, 50, 125, 200 and 250 mM of Cl and SO 4 2– concentration) for 10 days. Content of chlorophylls and carotenoids were significantly higher than control at increasing NaCl and Na2SO4 concentration, in contrast, were significantly reduced by higher concentration of NaCl + Na2SO4. Rubisco activity reduced steadily at 100 and 250 mM NaCl, while increased at 400 and 500 mM NaCl. Rubisco activity was significantly higher than control at 100 mM Na2SO4, and was no more change under NaCl + Na2SO4 treatment. The SOD activity increased with increasing NaCl and Na2SO4, and increased at moderate NaCl + Na2SO4 treatment. MDA content was lower than control at 250 mM salt concentration. On the basis of the data obtained, K. foliatum showed resistance to salt such as Na+, Cland SO 4 2– , Rubisco activity in K. foliatum might be more sensitive to salt.  相似文献   

2.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

3.
Transpiration and water absorption rates, stomatal and cuticular resistances to water vapour diffusion, were measured onPlantago maritima (halophyte) andPlantago lanceolata (glycophyte) grown in the presence of NaCl or Na2SO4. Water absorption was reduced in the presence of Na2SO4 and transpiration rate was increased when NaCl was added to the nutrient solution. The glycophyte daily water balance was more disturbed than that of the halophyte in the presence of Na2SO4.  相似文献   

4.
Osmotic and ion-specific effects of NaCl and Na2SO4 on Phragmites australis (Cav.) Trin ex. Steud. were investigated in a laboratory experiment by examining effects of iso-osmotic solutions of NaCl and Na2SO4 on growth, osmolality of cell sap, proline content, elemental composition and gas exchange. Plants were supplied with a control standard nutrient solution (Ψ = −0.09 MPa) or solutions of NaCl or Na2SO4 at water potentials of −0.50, −1.09 or −1.74 MPa. Salt treatments increased root concentrations of Na and S or Cl, whereas P. australis had efficient mechanisms for exclusion of Na and S and partly Cl ions from the leaves. Incomplete exclusion of Cl from the leaves may affect aboveground biomass production, which was significantly more reduced by NaCl than Na2SO4. Stomatal conductance was negatively influenced by decreasing water potentials caused by NaCl or Na2SO4, implying that a non-significant photosynthetic depression observed in plants grown at −1.74 MPa was mainly due to osmotically induced stomatal closure. This was supported by decreasing internal CO2 concentrations. Saline conditions increased the intrinsic water use efficiency and did not alter photosynthetic parameters derived from light response curves, supporting the assumption of a well-functioning CO2 utilization in salt stressed plants. The leaf proline concentration increased equally in NaCl and Na2SO4-treated plants, and may play an important role as a compatible organic solute. P. australis possesses a range of mechanisms conferring tolerance to both NaCl and Na2SO4 stress and except in terms of growth the phytotoxicity of NaCl and Na2SO4 are comparable.  相似文献   

5.
Pecan [Carya illinoensis (Wanngenh) K. Koch] is one of the most important nut crops in arid and semiarid regions of Mexico. Here, most pecans are grown in saline soils having poor permeability which are further degraded by the use of low-quality irrigation water. Salinity adversely affects both pecan nut quality and yield. Little work has been done to explore the physiological effects of salinity on native pecan trees. Here we examine physiological changes determined by exposure of pecan seedlings to sodium sulfate (Na2SO4) at four concentrations: 1000, 2000, 3000 and 4000 mg/L applied twice weekly over a 70 d period. Control plants were similarly irrigated but with water free of Na2SO4. The aim was to identify and quantify the putative salinity damage to native pecan seedlings growing in Chihuahua, Mexico. Seedlings exposed to Na2SO4 were of reduced height and stem diameter. At the highest exposure level (4000 mg/L), proline concentration in the leaflets was 820% higher (2.63 mg/g) than in the controls (0.32 mg/g), and chlorophyll was 35% lower (23.4 mg/L) than in the controls (36 mg/L). Meanwhile, sulfate ion concentration was increased by 104% from 84.47 to 172.5 mg/g. Root biomass decreased by 310% (from 30.5 to 9.5 g) and foliar biomass decreased by 260% (from 26.7 to 10 g). No disease symptoms were apparent in any seedlings suggesting that these changes were induced by Na2SO4 stress alone. Of the physiological parameters measured, proline, chlorophyll and sulfate ion concentration, as well as root and shoot biomasses were strongly affected by irrigation with Na2SO4 at concentrations of 2000 mg/L and above.  相似文献   

6.
Sodium chloride and sodium sulfate are commonly present in extraction tailings waters produced as a result of surface mining and affect plants on reclaimed areas. Red-osier dogwood (Cornus stolonifera Michx) seedlings were demonstrated to be relatively resistant to these high salinity oil sands tailings waters. The objectives of this study were to compare the effects of Na2SO4 and NaCl, on growth, tissue ion content, water relations and gas exchange in red-osier dogwood (Cornus stolonifera Michx) seedlings. In the present study, red-osier dogwood seedlings were grown in aerated half-strength modified Hoagland's mineral solution containing 0, 25, 50 or 100 mM of NaCl or Na2SO4. After four weeks of treatment, plant dry weights decreased and the amount of Na+ in plant tissues increased with increasing salt concentration. Na+ tissue content was higher in plants treated with NaCl than Na2SO4 and it was greater in roots than shoots. However, Cl concentration in the NaCl treated plants was higher in shoots than in roots. The decrease in stomatal conductance and photosynthetic rates observed in presence of salts is likely to contribute to the growth reduction. Our results suggest that red-osier dogwood is able to control the transport of Na+ from roots to shoots when external concentrations are 50 mM or less.  相似文献   

7.
Unselected and sodium sulfate tolerant callus cultures of Brassica napus L. cv Westar were grown on media supplemented with mannitol, NaCl, or Na2SO4. In all cases, growth of tolerant callus, measured on a fresh weight or dry weight basis, was greater than that of unselected callus, which was also subject to necrosis on high levels of salt. Tissue water potential became more negative in both unselected and tolerant callus grown in the presence of mannitol or Na2SO4. Water potentials in unselected callus were more negative than those of the tolerant tissues; but over a range of Na2SO4 concentrations both cultures displayed osmotic adjustment, maintaining relatively constant turgor. Proline accumulation in both unselected and tolerant callus was low (15 to 20 micromoles per gram dry weight) in the absence of stress, but increased on media supplemented with mannitol, NaCl, or Na2SO4. Increases in proline concentration were approximately linear in tolerant callus, reaching a maximum of 130 to 175 micromoles per gram dry weight. In unselected callus, concentrations were higher, reaching 390 to 520 micromoles per gram dry weight. Proline accumulation was correlated with inhibition of growth, and there was a negative correlation between proline concentration and culture age for tolerant callus.  相似文献   

8.
四翅滨藜生理生化特征对盐胁迫的响应   总被引:1,自引:0,他引:1  
采用温室盆栽试验研究四翅滨藜(Atriplex canescens)幼苗株高、地径、生物量、净光合速率、蒸腾速率、气孔导度、叶绿素含量、抗氧化酶活性及丙二醛含量对不同浓度NaCl和Na_2SO_4(0、100、200、300和400mmol·L~(-1))胁迫的响应,以探讨四翅滨藜对不同种类及不同浓度盐渍环境的适应机制及其耐盐机理。结果显示:(1)随着盐分浓度的升高,四翅滨藜幼苗的株高、地径及生物量增量呈现出先升高后降低的趋势,低盐浓度下2种盐均促进幼苗生长,盐浓度超过400mmol·L~(-1)时,NaCl对幼苗生长具有明显抑制作用。(2)2种盐处理下,四翅滨藜幼苗净光合速率(Pn)和叶绿素含量(Chl)随盐浓度增大而升高,即2种盐均对幼苗Pn和Chl含量具有促进作用,且Na_2SO_4的促进效果大于NaCl;而幼苗蒸腾速率(Tr)和气孔导度(Gs)随盐浓度升高呈先增大后减小的趋势,且Na_2SO_4的促进作用强于NaCl。(3)与对照相比,四翅滨藜幼苗的丙二醛、SOD、POD酶活性在NaCl和Na_2SO_42种盐处理下,随着盐浓度的升高均呈现出不同程度的增大,且增大幅度总体表现为NaClNa_2SO_4。研究表明,四翅滨藜在NaCl和Na_2SO_4胁迫下,叶绿素的分解速率以及发挥作用的渗透调节物质均有差异,使得幼苗叶片健康程度不同,导致叶片光合能力大小的差异,最终表现为植株的生长差异;四翅滨藜具有较强的耐盐能力,而且对Na_2SO_4的适应能力强于NaCl。  相似文献   

9.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

10.
Two iso-osmotic concentrations of NaCl and Na2SO4 were used for discriminating between the effects of specific ion toxicities of salt stress on pepper plants (Capsicum annuum L.) grown in hydroponic conditions, in a controlled-environment greenhouse. The two salts were applied to plants at different electrical conductivities, and leaf water relations, osmotic adjustment and root hydraulic conductance were measured. Leaf water potential (w), leaf osmotic potential (o) and leaf turgor potential (p) decreased significantly when EC increased, but the decrease was less for NaCl- than for Na2SO4-treated plants. The reduction in stomatal conductance was higher for NaCl-treated plants. There were no differences in the effect of both treatments on the osmotic adjustment, and a reduction in root hydraulic conductance and the flux of solutes into the xylem was observed, except for the saline ions (Na+, Cl and SO4 2–). Therefore, pepper growth decreased with increasing salinity because the plants were unable to adjust osmotically or because of the toxic effects of Cl, SO4 2– and/or Na+. However, turgor of NaCl-treated plants was maintained at low EC (3 and 4 dS m–1) probably due to the maintenance of water transport into the plant (decrease of stomatal conductance), which, together with the lower concentration of Na+ in the plant tissues compared with the Na2SO4 treatment, could be the cause of the smaller decrease in growth.  相似文献   

11.
Callus of tobacco (Nicotiana tabacum L. cv. Wisconsin 38) was grown on callus-proliferating (CP) and shoot-forming (SF) media with elevated sodium sulfate (Na2SO4) concentrations either in the light or dark for more than one year. An increase in Na2SO4 concentration resulted in a decrease in callus growth index, an increase in percent dry weight of callus tissues grown on both media, and a decrease in both number of calli forming shoots and number of shoots per callus in SF medium. The CP callus grown in the light spontaneously began to form shoots after the 5th monthly transfer, and spontaneous root formation occured after the 16th transfer in the presence of 0.75 and 1.0% Na2SO4. Both water () and osmotic (s) potentials of the callus increased with increasing Na2SO4 concentration; and callus exhibited greater and s in the light than dark for both CP and SF media.  相似文献   

12.
T.M. Wong 《Life sciences》1983,33(3):255-259
ADH at doses 20 μU/100 g and 100 μU/100 g or 20 μU/100 g and 200 μU/100 g was injected intravenously into pentobarbital and alcohol anaesthetized rats loaded with either water or isotonic solution consisting of NaCl, glucose and ethanol. At the dose of 20 μU/100 g ADH retained water in both water and NaCl loaded animals. At high doses 100 μU/100 g in NaCl loaded rats and 200 μU/100 g in water loaded rats, ADH retained water and increased the renal excretion of Na+. That the natriuretic effect of ADH at the dose 20 μU/100 g was enhanced in NaCl loaded rats suggests that ADH is probably important in the regulation of Na+ content in the body when it is loaded with NaCl.  相似文献   

13.
Using sand culture, we examined the responses of 6-month-old jack pine (Pinus banksiana Lamb.) seedlings to boron and salinity (sodium chloride and sodium sulfate) treatments. During 4 weeks of treatments, 60 mM NaCl and 60 mM Na2SO4 significantly decreased survival, new shoot length, number of new roots, shoot to root dry weight ratio and transpiration rates. When applied in absence of the salts, B had little effect on the measured variables. However, when applied together with salts, B decreased seedling survival, increased needle injury and altered tissue elemental concentrations in jack pine seedlings. In 2 mM B treatment, B concentration was higher in the shoots than in the roots. However, when 2 mM B was present in NaCl and Na2SO4 treatments, shoot boron concentration declined and greater proportion of B accumulated in the roots. This shift corresponded to a decline in transpiration rates. In plants treated with NaCl, Na accumulated primarily in the shoots, while in Na2SO4-treated plants Na accumulated mostly in the roots. Based on the electrolyte leakage and needle necrosis data, Cl appears to be the major factor contributing to seedling injury and B aggravates the injurious effects of NaCl. We suggest that Cl may contribute to Na and B toxicity in jack pine by altering cell membrane permeability leading to increased Na concentration in the shoots.  相似文献   

14.
Salt‐affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low‐ and high‐salt treatments of NaCl, Na2SO4, and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25–30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+, K+, and Cl? showed comparable accumulation patterns in leaves and roots, except for SO42? which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography–mass spectrometry‐based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo‐inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+, K+, or Cl?. For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl? accumulation.  相似文献   

15.
A chemically defined media was developed for growing Agrobacterium tumefaciens at large scale for commercial production of recombinant proteins by transient expression in plants. Design of experiments was used to identify major and secondary effects of ten media components: sucrose, ammonium sulfate ((NH4)2SO4), magnesium sulfate heptahydrate (MgSO4*7H2O), calcium chloride dihydrate (CaCl2*2H2O), iron (II) sulfate heptahydrate (FeSO4*7H2O), manganese (II) sulfate monohydrate (MnSO4*H2O), zinc sulfate heptahydrate (ZnSO4*7H2O), sodium chloride (NaCl), potassium chloride (KCl) and a sodium/potassium phosphate buffer (Na2HPO4/KH2PO4). Calcium and zinc were found to have no detectable impact on biomass concentration or transient expression level, and concentrations of the other components that maximized final biomass concentration were determined. The maximum specific growth rate of Agrobacterium strain C58C1 pTFS40 in this media was 0.33 ± 0.01 h?1 and the final biomass concentration after 26 h of batch growth in shake flasks was 2.6 g dry cell weight/L. Transient expression levels of the reporter protein GUS following infiltration of a recombinant Agrobacterium strain C58C1 into N. benthamiana were comparable when the strain was grown in the defined media, Lysogeny Broth (LB) media, or yeast extract‐peptone (YEP) media. In LB and YEP media, free amino acid concentration was measured at three points over the course of batch growth of Agrobacterium strain C58C1 pTFS40; results indicated that l ‐serine and l ‐asparagine were depleted from the media first, followed by l ‐alanine and l ‐glutamic acid. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1218–1225, 2017  相似文献   

16.
The effect of different concentrations of dietary Na from three Na salts (NaCl, NaHCO3 and Na2SO4) was assessed in two experiments carried out on broiler chickens aged from 1 to 35 days. In Exp. 1, diets were supplemented with 0.15, 0.20 and 0.25% Na, which increased the average Na content of the diets to 0.19, 0.24 and 0.30% respectively. In Exp. 2, the amounts of selected Na salts (NaCl and Na2SO4) were reduced and the estimated Na contents of experimental diets amounted to 0.10, 0.13, 0.15 and 0.19%. In view of the risk factors for the development of foot pad dermatitis, our aim was to find an optimum source of Na and to keep dietary Na intake at the minimum level sufficient to support normal growth and acceptable slaughter quality. The present results suggest that the amount of Na required for the undisturbed growth of broilers and adequate feed conversion is not less than 0.15% of additional Na in the starter period (1–14 d), and not less than 0.11% in the grower period (until day 35). Higher dietary Na levels did not lead to further production advantages, and were found to increase the moisture content of droppings. Dry matter concentration of excreta was also affected by Na source. In comparison with NaHCO3, Na2SO4 seemed to be a better alternative for NaCl. Na2SO4 also tended to surpass NaHCO3 as a dietary alternative for NaCl in terms of feed utilisation during the starter period. The applied additional Na levels (0.25 and 0.15%) and Na sources had no effect on the sensory profile and composition of breast meat.  相似文献   

17.
互花米草(Spartina alterniflora)的入侵给海岸带盐沼生态系统的结构和功能带来了显著影响。互花米草盐沼中的硫含量高于附近的土著芦苇(Phragmites australis)盐沼。为探讨硫元素对互花米草和芦苇竞争过程的可能影响及其作用机制,以50mmol·L–1的Na2SO4和Na2S对互花米草和芦苇进行处理,分析处理前后5天内两种植物光合气体交换和叶绿素荧光指标变化的差异,实验另设等Na+浓度的Na Cl处理作为比较。研究发现:Na2S对互花米草和芦苇光合作用影响的差异最大,Na Cl次之,Na2SO4最小。Na2S处理后,互花米草净光合速率(Pn)出现显著上升,芦苇Pn值大幅度下降。互花米草的光饱和点(Isat)上升而芦苇的Isat值无变化。表明Na2S处理对互花米草的光合能力有促进作用,但对芦苇的光合能力有抑制作用。Na Cl处理后互花米草Pn值也出现小幅上升,而芦苇Pn值略有下降。Na2SO4处理对互花米草和芦苇的Pn值均无显著影响。除Na2SO4处理的互花米草外,不同盐处理后的互花米草和芦苇非光化学淬灭(NPQ)均出现上升趋势。研究结果表明互花米草对环境硫胁迫的适应能力显著高于芦苇,暗示盐沼高硫环境尤其是硫化物有助于互花米草相对于芦苇的竞争,也很可能是其形成单一植被的重要原因之一。  相似文献   

18.
Sulfur dioxide (SO2) is naturally synthesized by glutamate‐oxaloacetate transaminase (GOT) from l ‐cysteine in mammalian cells. We aim to investigate the role of SO2 in inflammation in acute lung injury (ALI) following limb ischemia/reperfusion (I/R). Male Wistar rats were subjected to limb I/R and were injected with saline, GOT inhibitor hydroxamate (HDX, 0.47 mmol/kg), or the SO2 donor Na2SO3/NaHSO3 (0.54 mmol/kg/0.18 mmol/kg). Compared with the sham operation, the plasma SO2 levels were significantly decreased by limb I/R treatment. In addition, SO2 concentration and GOT activity in the lung tissue were also reduced in ALI. The occurrence of ALI following limb I/R can be prevented by Na2SO3/NaHSO3 treatment, whereas it can be significantly aggravated by HDX. The plasma IL‐1β, IL‐6, and IL‐10 levels were consistent with myeloperoxidase activity and inflammation in lung tissue. In conclusion, our data suggest that downregulation of endogenous SO2 production might be involved in pathogenesis of ALI following limb I/R in rats. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:389‐397, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21492  相似文献   

19.
Low soil temperatures and low water potentials reduce and delay the seed germination of canola (Brassica rapa L., B. napus L.) in western Canada. Germination is also very sensitive to the salinity effects of nitrogen fertiliser placed with the seed, especially when the seed bed is relatively dry. The effects of pre-hydration and re-drying treatment on canola (Brassica rapa L. cv. Tobin) seed germination and seedling emergence at 10°C subjected to either a water or salt stress were determined. Low water potentials, induced by polyethylene glycol (PEG 8000), low soil moisture, or high concentrations of salts, reduced both germination and seedling emergence, and increased the time to 50% germination and emergence of seeds at 10°C. At equal osmotic potentials, Na2SO4 was less inhibitory on low temperature germination than either NaCl or PEG, suggesting that the sulphate ion partially alleviated the inhibitory effects of low water potential. Solutions of NaCI produced more abnormal seedlings compared to Na2SO4, suggesting that NaCl was more toxic than Na2SO4 during seedling development. Pre-hydration and re-drying partially overcame the inhibitory effects of both low water potential and salts on seed germination and seedling emergence at 10°C. The seed treatment increased the germination rate in Petri dishes and seedling emergence from a sandy loam soil. Water potentials or soil water contents required to inhibit 50% germination or emergence at 10°C were lower for treated seeds compared to control seeds. Salt concentrations inhibiting 50% emergence were higher for treated seeds than control seeds. Neither treated nor control seeds produced seedlings which emerged if the soil water content was lower than 9% or when the soil was continuously irrigated with salt solutions of 100 mmol kg-1 of NaCl or 50 mmol kg-1 of Na2SO4. These results suggest that the pre-hydration and re-drying treatment did not lower the base water potentials at which seedling emergence could occur. Abnormal seedlings were observed in both treated and control seeds, particularly if the soil was watered with NaCl solutions; however, the seed treatment reduced the number of abnormal seedlings.  相似文献   

20.
The hepatitis E virus (HEV) capsid protein has been demonstrated to be able to assemble into particles in vitro. However, this process and the mechanism of protein–protein interactions during particle assembly remain unclear. In this study, we investigated the assembly mechanism of HEV structural protein subunits, the capsid protein p239 (aa368–606), using analytical ultracentrifugation. It was the first to observe that the p239 can form particles in 4M urea as a result of supplementation with salt, including ammonium sulfate [(NH4)2SO4], sodium sulfate (Na2SO4), sodium chloride (NaCl), and ammonium chloride (NH4Cl). Interestingly, it is the ionic strength that determines the efficiency of promoting particle assembly. The assembly rate was affected by temperature and salt concentration. When (NH4)2SO4 was used, assembling intermediates of p239 with sedimentation coefficient values of approximately 5 S, which were mostly dodecamers, were identified for the first time. A highly conserved 28‐aa region (aa368–395) of p239 was found to be critical for particle assembly, and the hydrophobic residues Leu372, Leu375, and Leu395of p239 was found to be critical for particle assembly, which was revealed by site‐directed mutagenesis. This study provides new insights into the assembly mechanism of native HEV, and contributes a valuable basis for further investigations of protein assembly by hydrophobic interactions under denaturing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号