首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methyl α-d-mannopyranoside (1 mole) reacts with 2,2-dimethoxypropane (1 mole), to give the 4,6-O-isopropylidene derivative (2) which rearranges to the 2,3-O-isopropylidene derivative (4). Compound4 can also be prepared by graded hydrolysis of methyl 2,3:4,6-di-O-isopropylidene-α-d-mannopyranoside. Successive benzoylation, oxidation, and reduction of4 provides a useful route to a number ofd-talopyranoside compounds. Methyl α-d-mannofuranoside (1 mole) reacts with 1–2 moles of 2,2-dimethoxypropane to give the 5,6-O-isopropylidene derivative (16) in 90% yield.  相似文献   

2.
3.
Methods for the synthesis of 3-O-(α-d-mannopyranosyl)-d-mannose and 2-(4-aminophenyl)ethyl 3-O-(α-d-mannopyranosyl)-α-d-mannopyranoside have been investigated by a number of sequences. Glycosidations with 2,3-di-O-acetyl-4,6-di-O-benzyl-d-mannopyranosyl and 2-O-benzoyl-3,4,6-tri-O-benzyl-d-mannopyranosyl p-toluenesulfonates were found to give better yields than the Helferich modification, the use of a peracylated d-mannopyranosyl halide, or the use of triflyl leaving group. Only the α anomer was obtained. Factors influencing glycosidation reactions are discussed. A mercury(II) complex was used for selective 2-O-acylation of 4,6-di-O-benzyl-α-d-mannopyranosides. A disaccharide—protein conjugate was prepared by the isothiocyanate method.  相似文献   

4.
The synthesis of the title disaccharide derivative (1C), corresponding to the Salmonella O-factor 21, is described. Treatment of 2-O-benzyl-4-O-p-nitrobenzoyl-α-paratosyl bromide (5) with p-nitrophenyl 2-O-benzyl-4,6-O-benzylidene-α-d-mannoside in dichloromethane, in the presence of mercuric cyanide, gave the α- and β-linked disaccharide derivatives (6a and 6b) in yields of 34 and 5%, respectively. The disaccharide derivative 10 can react with free amino groups in proteins to produce artificial antigens useful in studies on Salmonella immunology.  相似文献   

5.
Reaction of 1,2-O-cyclopentylidene-α-d-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene- 5-O-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O-α-(9) and -β-d-glucopyranosyl-d-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O-α-d-glucopyranosyl-d-fructopyranose (leucrose, 53%).  相似文献   

6.
The crystal structure of methyl 3,4-O-isopropylidene-2,6-di-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-galactopyranoside (1), C38H54O24 · (C4H8O2)0.32 was determined by X-ray diffraction;1 crystallises in space group P21 with a = 12.480(3), b = 8.821(3), c = 21.182(4)Å, β = 98.46(3)°, and Z = 2. The structure was solved by Patterson-search and Fourier-recycling procedures and refined to Rw(R) = 0.048(0.063), using 4348 [3112 with I> 2σ(I)] independent reflections. The β-d-galactosyl rings are slightly distorted and, due to the isopropylidene group, the α-d-galactoside ring is severely distorted. The conformation near the β-(1→6) and β-(1→2) linkages between the pyranoid rings is not significantly affected by the acetyl groups, but the anomeric C-O-C bridge angles have unusual values. The C-6O-6 bond in the β-d-galactosyl group (1→2)-linked to the α-d-galactoside residue has an unusual gauche—trans conformation with respect to C-4 and O-5. The CH3-(C = O)-O-C moieties are planar within 0.01Å, and 32.6% of all unit cells contain a molecule of ethyl acetate.  相似文献   

7.
As part of a program to synthesize the ceramide trisaccharide (1) related to Fabry's disease, methyl 4-O-(4-O-α-d-galactopyranosyl-β-d-galactopyranosyl)-β-d-glucopyranoside (12) was prepared. Methyl β-lactoside (2) was converted into methyl 4-O-(4,6-O-benzylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (7) was synthesized from 4 through the intermediates methyl 2,3,6-tri-O-benzoyl-4-O-(4,6-O-benzylidene-2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (5) and methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (6). The halide-catalyzed condensation of 7 with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (8) gave methyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)- β-d-galactopyranosyl]-β-d-glucopyranoside (10). Stepwise deprotection of 10 led to 12, the methyl β-glycoside of the trisaccharide related to Fabry's disease.  相似文献   

8.
The preparation of 2,3-di-O-benzoyl-4,6-O-benzylidene-α-d-glucopyranosyl-2-O-benzoyl-4,6-O-benzylidene-α-d-ribo-hexopyranosid-3-ulose (3) from 4,6:4′,6′-di-O-benzylidene-α,α-trehalose (1) via the 2,3,2′-tribenzoate 2 has been improved. Reduction of 3 with sodium borohydride gave 2-O-benzoyl-4,6-O-benzylidene-α-d-allopyranosyl 2,3-di-O-benzoyl-4,6-O-benzylidene-α-d-glucopyranoside (4), which was converted into the methanesulfonate 5 and trifluoromethanesulfonate 6. Displacement of the sulfonic ester group in 6 with lithium azide was very facile and afforded a high yield of 3-azido-2-O-benzoyl-4,6-O-benzylidene-3-deoxy-α-d-glucopyranosyl 2,3-di-O-benzoyl-4,6-O-benzylidene-α-d-glycopyranoside (7), whereas similar displacement in 5 proceeded sluggishly, giving a lower yield of 7 together with an unsaturated disaccharide (8). The azido sugar 7 was converted by conventional reactions into the analogous 2,3,2′-triacetate 9, the corresponding 2,3,2′-triol 10, and deprotected 3-azido-3-deoxy-α-d-glucopyranosyl α-d-glucopyranoside (11). Hydrogenation of 11 over Adams' catalyst furnished crystalline 3-amino-3-deoxy-α,α-trehalose hydrochloride (12), the overall yield from 3 being 35%.  相似文献   

9.
The koenigs-Knorr glycosylation of 4,6-O-ethylidene-1,2-O-isopropylidene-3-O-(2,3-O-isopropylidene-α-l-rhamnopyranosyl)-α-d-galactopyranose (3) by 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide (10), as well as Helferich glycosylations of 3 by tetra-O-acetyl-α-d-mannopyranosyl and -α-d-glucopyranosyl bromides, proceeded smoothly to give high yields of trisaccharide derivatives (12, 16, and 17). An efficient procedure for the transformation of 12, 16, and 17 into the α-deca-acetates of the respective trisaccharides has been developed. Zemplén de-acetylation then afforded the title trisaccharides in yields of 53, 52, and 62 %, respectively, from 3. A new route to 1,4,6-tri-O-acetyl-2,3-O-carbonyl-α-d-mannopyranose is suggested.  相似文献   

10.
The effect of phenols on the hydrolysis of substituted phenyl β-d-gluco- and β-d-xylo-pyranosides by β-d-glucosidase from Stachybotrys atra has been investigated. Depending on the glycon part of the substrate and on the phenol substituent, the hydrolysis is either inhibited or activated. With aryl β-d-xylopyranosides, transfer of the xylosyl residue to the phenol, with the formation of new phenyl β-d-xylopyranosides, is observed. With aryl β-d-glucopyranosides, such transfer does not occur when phenols are used as acceptors, but it does occur with anilines. A two-step mechanism, in which the first step is partially reversible, is proposed to explain these observations. A qualitative analysis of the various factors determining the overall effect of the phenol is given.  相似文献   

11.
1-O-Tosyl-d-glucopyranose derivatives having a nonparticipating benzyl group at O-2 have been shown to react rapidly in various solvents with low concentrations of alcohols, either methanol or methyl 2,3,4-tri-O-benzyl-α-d-glucopyranoside. The stereospecificity of the glucoside-forming reaction could be varied from 80% of β to 100% of α anomer by changing the solvent or modifying the substituents on the 1-O-tosyl-d-glucopyranose derivative. 2,3,4-Tri-O-benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-α-d-glucopyranose in diethyl ether gave a high yield of α-d-glucoside. Kinetic measurements of reaction with various alcohols (methanol, 2-propanol, and cyclohexanol) show a high rate even at low concentrations of alcohol, and give some insight into the reaction mechanism. The high rate and stereoselectivity of their reaction suggest that the 1-O-tosyl-d-glucopyranose derivatives may be used as reagents for oligosaccharide synthesis.  相似文献   

12.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

13.
Maltitol, crystallised from aqueous solution, has m.p. 146.5–147°, [α]d + 106.5° (water), and is orthorhombic with the space group P212121 and Z = 4, and with cell dimensions a = 8.166(5), b = 12.721(9), and c = 13.629(6) Å. The molecule shows a fully extended conformation with no intramolecular hydrogen-bonds. All nine hydroxyl groups are involved in intermolecular hydrogen-bond networks and in bifurcated, finite chains. The d-glucopyranosyl moiety has the 4C1 conformation, and the conformation about the C-5–C-6 bond is gauche-gauche. The d-glucitol residue has the bent [ap, Psc, Psc (APP)] conformation. The empirical formula for the solubility in water is C = 119.1 + 1.204 T + 4.137 × 10?2 T2 ? 7.137 × 10?4 T3 + 7.978 × 10?6 T4. The thermal properties are as follows: ΔHf = 13.5 kcal.mol?1, and Q = ?5.57 kcal.mol?1.  相似文献   

14.
Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside with lithium dimethyl cuprate gave methyl 2,5-dideoxy-2-C-methyl-α-d-arabinofuranoside (54% yield) and methyl 3,5-dideoxy-3-C-methyl-α-d-xylofuranoside (10%). The former was converted into its 3-O-acetyl and 3-O-benzyl derivatives, which, upon acid hydrolysis, afforded 3-O-acetyl- and 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinofuranose in 60–75% overall yield. Treatment of the 3-O-benzyl compound with ethanethiol in the presence of trifluoromethanesulfonic acid afforded 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinose diethyl dithioacetal (20%) and ethyl 3-O-benzyl-2,5-dideoxy-2-C-methyl-1-thio-α-d-arabinoside (73%). The former, which was also available from the latter by equilibration in acidic ethanethiol, was acetylated at O-4 and the product converted into the corresponding dimethyl acetal (85% overall yield). This compound was, after debenzylation, hydrolyzed with acid, to provide 4-O-acetyl-2,5-dideoxy-2-C-methyl-d-arabinose in 70% overall yield.  相似文献   

15.
Reaction of 2,3,5-tri-O-benzyl-d-ribofuranosyl bromide with mercuric cyanide afforded an anomeric mixture of cyanides (3) and 1,4-anhydro-2,3,5-tri-O-benzyl-d-erythro-pent-1-enitol (6). Reduction of 3 with lithium aluminum hydride gave a pair of epimeric amines (4 and 5), which were separated by chromatography and characterized by conversion into the known 2,5-anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-ureido-d-allitol (7) and its epimer, 2,5-anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-ureido-d-altritol (8). Compound 8 and its precursor were used for the synthesis of various “α-homonucleosides”.  相似文献   

16.
1,4:3,6-dianhydro-α-d-glucopyranose (1) was formed, together with 1,6-anhydro-3,4-dideoxy-β-d-glycero-hex-3-enopyranos-2-ulose (levoglycosenone, 2) and levoglucosan (4), on acid-catalyzed pyrolysis of d-glucose, amylopectin, and cellulose. Pyrolysis of 1 in the presence of acid provided significant quantities of 2, indicating that 1 can act as a pyrolytic precursor of 2. A pyrolysis product from cellulose previously considered to be 1,6-anhydro-3-deoxy-β-d-erythro-hex-3-enopyranose (12) was shown to be dianhydride 1.  相似文献   

17.
Concanavalin A (Con A) is the best-known plant lectin and has importantin vitrobiological activities arising from its specific saccharide-binding ability. Its exact biological role still remains unknown. The complexes of Con A with 4′-nitro-phenyl-α-d-mannopyranoside (α-PNM) and 4′-nitrophenyl-α-d-glucopyranoside (α-PNG) have been crystallized in space group P21212 with cell dimensionsa= 135.19 Å,b= 155.38 Å,c= 71.25 Å anda= 134.66 Å,b= 155.67 Å, andc= 71.42 Å, respectively. X-ray diffraction intensities to 2.75 Å for the α-PNM and to 3.0 Å resolution for the α-PNG complex have been collected. The structures of the complexes were solved by molecular replacement and refined by simulated annealing methods to crystallographic R-factor values of 0.185/0.186 and free-R-factor values of 0.260/0.274, respectively. In both structures, the asymmetric unit contains four molecules arranged as a tetramer, with approximate 222 symmetry. A saccharide molecule is bound in the sugar-binding site near the surface of each monomer. The nonsugar (aglycon) portion of the compounds used helps to identify the exact orientation of the saccharide in the sugar-binding pocket and is involved in major interactions between tetramers. The hydrogen bonding network in the region of the binding site has been analyzed, and only minor differences with the previously reported Con A–methyl-α-d-mannopyranoside complex structure have been observed. Structural differences that may contribute to the slight preference of the lectin for mannosides over glucosides are discussed. Calculations indicate a negative electrostatic surface potential for the saccharide binding site of Con A, which may be important for its biological activity. It is also shown in detail how a particular class of hydrophobic ligands interact with one of the three so-called characteristic hydrophobic sites of the lectins.  相似文献   

18.
The rate constants for the hydrolysis of six alkyl and four aryl β-d-xylofuranosides in aqueous perchloric acid at various temperatures have been measured. The effects of varying the aglycon structure on the hydrolysis rate are interpreted in terms of two concurrent reactions. Either, the substrate, protonated on the glycosidic oxygen atom, undergoes a rate-limiting heterolysis to form a cyclic oxocarbonium ion, or, an initial rapid protonation of the ring oxygen is followed by a unimolecular cleavage of the five-membered ring, all subsequent reactions being fast. It is suggested that xylofuranosides having strongly electron-attracting aglycon groups react mainly by the former pathway, whereas the latter is more favourable for substrates having electron-repelling aglycon groups. The negative entropies of activation obtained with the latter compounds are attributed to the rate-limiting opening of the five-membered ring. The rate variations of the hydrolyses of alkyl β-d-xylofuranosides in aqueous perchloric acid-methyl sulfoxide mixtures are interpreted as lending further support for the suggested chance in mechanism.  相似文献   

19.
2-Deoxy-β-d-lyxo-hexose (2-deoxy-β-d-galactose, C6H12O5), Mr = 164.16, is monoclinic, P21 with a = 9.811(1), b = 6.953(1), c = 5.315(1) Å, β = 91.58(2)°, V = 362.5(1) Å3, Z = 2, and Dx = 1.504 g.cm?3. The structure was solved by direct methods (MULTAN 79) and refined to R = 0.032 for 800 observed reflections. Each hydroxyl oxygen, acting both as donor and acceptor, is involved in a hydrogen-bonding system, which consists of infinite helical chains around the crystallographic screw axes. Moreover, weak interactions allow the incorporation of the ring-oxygen atoms into an interconnected network.  相似文献   

20.
Dextransucrase was shown to catalyze the hydrolysis of sucrose. The hydrolytic activity was found to be directly correlatable with dextransucrase activity on poly-(acrylamide) disc-gel electrophoresis. In studies on the hydrolysis of sucrose and formation of dextran as a function of time and substrate concentration, the two activities were found to be competitive with each other. Competition was also observed between hydrolysis and the transfer of d-glucosyl groups to added acceptors. The results suggest that the three activities, namely, polymerization, d-glucosyl transfer, and hydrolysis, compete for a form of the enzyme that is common to all three reactions. It is proposed that this form may be a d-glucosylated derivative of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号