首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown.Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development.Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay.Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression.Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.  相似文献   

2.
Onco-miR-182-5p has been reported to be over-expressed in bladder cancer (BC) tissues however a detailed functional analysis of miR-182-5p has not been carried out in BC. Therefore the purpose of this study was to: 1. conduct a functional analysis of miR-182-5p in bladder cancer, 2. assess its usefulness as a tumor marker, 3. identify miR-182-5p target genes in BC. Initially we found that miR-182-5p expression was significantly higher in bladder cancer compared to normal tissues and high miR-182-5p expression was associated with shorter overall survival in BC patients. To study the functional significance of miR-182-5p, we over-expressed miR-182-5p with miR-182-5p precursor and observed that cell proliferation, migration and invasion abilities were increased in BC cells. However cell apoptosis was inhibited by miR-182-5p. We also identified Smad4 and RECK as potential target genes of miR-182-5p using several algorithms. 3′UTR luciferase activity of these target genes was significantly decreased and protein expression of these target genes was significantly up-regulated in miR-182-5p inhibitor transfected bladder cancer cells. MiR-182-5p also increased nuclear beta-catenin expression and while Smad4 repressed nuclear beta-catenin expression. In conclusion, our data suggests that miR-182-5p plays an important role as an oncogene by knocking down RECK and Smad4, resulting in activation of the Wnt-beta-catenin signaling pathway in bladder cancer.  相似文献   

3.
Bladder cancer is a common malignancy and miR-99a-5p has been reported to be downregulated in bladder cancer, but its function and the underlying mechanism in bladder cancer development remains largely unclear. Here, we report that miR-99a-5p expression was decreased in bladder cancer compared with the adjacent normal tissues. Receiver operating characteristic curve revealed that miR-99a-5p expression signature had area under curve value of 0.7989 in differing bladder cancer from the adjacent normal tissues. Bladder cancer patients with low expression of miR-99a-5p had a poor survival rate. Gain-of-function and loss-of-function approaches demonstrated that miR-99a-5p inhibited bladder cell proliferation and cell cycle. Furthermore, we identified that mammalian target of rapamycin (mTOR) was a direct target of miR-99a-5p and mTOR restore could rescue the proliferative ability of bladder cancer cells. Moreover, miR-99a-5p/mTOR axis regulated S6K1 phosphorylation. These suggested that miR-99a-5p/mTOR axis might be a therapeutic target for bladder cancer.  相似文献   

4.
Colon cancer (CC) is the third most common neoplasm and the fourth cause of cancer-related death worldwide in both sexes. It has been established that inflammation plays a critical role in tumorigenesis and progression of CC. Immune, stromal and tumor cells supply the tumor microenvironment with pro-inflammatory cytokines such as interleukin 1β, TNFα, IL-6 and IL-11, to hyperactivate signaling pathways linked to cancerous processes. Recent findings suggest a putative role of microRNAs (miRNAs) in the progression and management of the inflammatory response in intestinal diseases. Moreover, miRNAs are able to regulate expression of molecular mediators that are linking inflammation and cancer. In this work a miRNA panel differentially expressed between healthy, inflammatory bowel disease (IBD) and CC tissue was established. Identified miRNAs regulate signaling pathways related to inflammation and cancer progression. An inflammation associated-miRNA panel composed of 11-miRNAs was found to be overexpressed in CC but not in inflamed or normal tissues (miR-21-5p, miR-304-5p, miR-577, miR-335-5p, miR-21-3p, miR-27b-5p, miR-335-3p, miR-215-5p, miR-30b-5p, miR-192-5p, miR-3065-5p). The association of top hit miRNAs, miR-3065-5p and miR-30b-5p expression with overall survival of CC patients was demonstrated using Kaplan-Meier tests. Finally, differential miRNA expression was validated using an inflammation-associated CC model induced by Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) to compare miRNA expression in normal and inflamed tissue versus CC tissues. Based on these findings we propose the identified inflammatory miRNA panel as a potent diagnostic tool for CC determination.  相似文献   

5.
6.
There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-Met by binding to its 3′-untranslated region. Silencing of c-Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.  相似文献   

7.
8.
Our previous studies have confirmed that lncRNA-ATB may be involved in the pathogenesis of preeclampsia, however, it is uncertain whether lncRNA-ATB influence the interaction between trophoblast and endothelial cells, which is crucial to the uterine spiral artery remodelling. Scratch wound healing and transwell invasion assay were conducted to test the migration and invasion of trophoblast cells. Co-culture model was used to simulate the physiological environment in vivo. The expression levels of lncRNA-ATB were analyzed in placenta tissues from healthy pregnant women and preeclampsia patients. Subsequently, the binding site of lncRNA-ATB and miR-651-3p was verified using dual-luciferase reporter assay, and the rescue experiment was used to study the effects of these two on the biological function. The direct effects of miR-651-3p and Yin Yang 1 (YY1) were verified using similar methods. LncRNA-ATB was found to be down-regulated in the placenta of preeclampsia patients. LncRNA-ATB knockdown decreased trophoblast migration, invasion and colocalisation with human umbilical vein endothelial cells. MiR-651-3p was a direct target of lncRNA-ATB and they had opposite effects. Moreover, the expression of lncRNA-ATB and miR-651-3p in placental tissues was negatively correlated. MiR-651-3p has been confirmed to directly target the 3′ untranslated region of YY1. The inhibitory effects of YY1 low expression on biological function was rescued by miR-651-3p depletion. Western blot analysis showed that lncRNA-ATB could regulate YY1 expression by sponging miR-651-3p. LncRNA-ATB functioned as a competitive endogenous RNA of miR-651-3p to regulate YY1 on progress of spiral artery remodelling.  相似文献   

9.
MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell lines with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.  相似文献   

10.
MicroRNAs have emerged as key regulators involved in a variety of biological processes. Previous studies have demonstrated that miR-192/215 participated in progression of Crohn's disease and colorectal cancer. However, their concrete relationships and regulation networks in diseases remain unclear. Here, we used bioinformatics methods to expound miR-192/215-5p macrocontrol regulatory networks shared by two diseases. For data mining and figure generation, several miRNA prediction tools, Human miRNA tissue atlas, FunRich, miRcancer, MalaCards, STRING, GEPIA, cBioPortal, GEO databases, Pathvisio, Graphpad Prism 6 software, etc . are extensively applied. miR-192/215-5p were specially distributed in colon tissues and enriched biological pathways were closely associated with human cancers. Emerging role of miR-192/215-5p and their common pathways in Crohn's disease and colorectal cancer was also analyzed. Based on results derived from multiple approaches, we identified the biological functions of miR-192/215-5p as a tumor suppressor and link Crohn's disease and colorectal cancer by targeting triglyceride synthesis and extracellular matrix remodeling pathways.  相似文献   

11.
12.
Fei X  Qi M  Wu B  Song Y  Wang Y  Li T 《FEBS letters》2012,586(4):392-397
It has been reported that expression of glucose transporter member 3 (GLUT3) is up-regulated in bladder cancers. However, the regulating mechanism remains unknown. Here, we assessed whether microRNAs (miRNAs) regulate GLUT3 expression in bladder cancers. In our study, miR-195-5p was identified to directly targeted GLUT3 3'-untranslated region (UTR) in bladder cancer T24 cells. Small interfering RNA (siRNA)- and miR-195-5p-mediated GLUT3 knockdown experiments revealed that miR-195-5p decreased T24 cells glucose uptake, inhibited cell growth and promoted cell apoptosis through suppression of GLUT3 expression. Therefore, miR-195-5p is a novel and also the first identified miRNA that targets GLUT3, and the aberrant decreased expression of miR-195-5p and consequent GLUT3 up-regulation may contribute to bladder carcinogenesis.  相似文献   

13.
《Genomics》2021,113(3):1338-1348
BackgroundExosomes are involved in intercellular communication via specialized molecular cargo, such as microRNAs (miRNAs). However, the mechanisms underlying exosomal miR-19b-1-5p in bladder cancer remain largely unknown, thus, we aim to investigate the effect of exosomal miR-19b-1-5p on bladder cancer with the involvement of non-receptor protein tyrosine kinase Arg (ABL2).MethodsmiR-19b-1-5p and ABL2 expression were tested in bladder cancer. miR-19b-1-5p inhibition/elevation assays were conducted to determine its role in bladder cancer. Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). Exosomes and T24 cells were co-cultured to verify their function in biological characteristics of bladder cancer cells.ResultsmiR-19b-1-5p was down-regulated while ABL2 was upregulated in bladder cancer. Exosomal miR-19b-1-5p suppressed malignant behaviors of bladder cancer cells, and also inhibited tumor growth in vivo. Up-regulated ABL2 mitigated the effects of miR-19b-1-5p up-regulation on bladder cancer cells.ConclusionBMSCs-derived exosomal miR-19b-1-5p suppresses bladder cancer growth via decreasing ABL2.  相似文献   

14.
miRNAs在肿瘤中异常表达,且与肿瘤的发生发展密切相关。目前发现,miR-9-5p在肿瘤中可能发挥原癌或抑癌效应,功能尚未完全阐述清楚。本文拟探讨miR-9-5p在舌癌中的作用。前期研究中收集10例舌癌组织及配对的癌旁组织,实时荧光定量PCR技术检测后发现,miR-9-5p在舌癌组织中的表达量显著高于癌旁组织,且其在舌癌细胞中的表达量也明显高于正常舌上皮细胞。此外,在舌癌细胞Tca8113中过表达miR-9-5p显著增加细胞的增殖能力。生物信息学预测及双荧光素酶报告基因实验证实,miR-9-5p可直接结合在自噬/苄氯素1调节因子1(activating molecule in beclin1-regulated autophagy, Ambra1)的 3′-UTR区域,靶向抑制Ambra1表达。Western印迹结果证实过表达miR-9-5p降低Ambra1的表达,反之亦然。Ambra1在舌癌细胞中的表达量显著低于正常舌上皮细胞。BrdU实验证实在舌癌细胞SCC-25中过表达Ambra1可显著抑制其增殖能力;相反,使用siRNA技术沉默Ambra1能够显著促进Tca8113细胞的增殖。在干预miR-9-5p的细胞中同时干预Ambra1的表达,结果发现Ambra1可显著逆转miR-9-5p对舌癌细胞增殖的促进作用。总之,miR-9-5p在舌癌中可能发挥原癌基因样作用,通过直接靶向抑制Ambra1表达进而促进舌癌细胞发生增殖。  相似文献   

15.
摘要 目的:探讨卵巢癌细胞UWB1.289中miR-155-5p对PARP抑制剂敏感性的影响及可能涉及的分子机制研究。方法:采用qRT-PCR技术检测miR-155-5p在有BRCA1/2突变和无BRCA1/2突变的卵巢癌组织及卵巢癌细胞中的表达情况。利用细胞转染、qRT-PCR以及Western Blot技术检测转染miR-155-5p模拟物和抑制剂的卵巢癌细胞UWB1.289中miR-155-5p的表达以及同源重组修复相关基因SIRT1、BRG1的表达。通过双荧光素酶报告基因实验验证miR-155-5p与SIRT1、BRG1之间的靶向性。运用CCK-8检测卵巢癌细胞UWB1.289中miR-155-5p对PARP抑制剂敏感性的影响。结果:与无BRCA1/2突变的卵巢癌组织及卵巢癌细胞相比,miR-155-5p在有BRCA1/2突变的卵巢癌组织及卵巢癌细胞中低表达。转染miR-155-5p模拟物可增加卵巢癌细胞UWB1.289中miR-155-5p的表达,同时降低同源重组修复相关基因SIRT1、BRG1的表达;转染miR-155-5p抑制剂可下调卵巢癌细胞UWB1.289中miR-155-5p的表达,同时增加SIRT1、BRG1的表达,进一步通过双荧光素酶报告基因实验证实miR-155-5p与SIRT1、BRG1存在特异性靶向结合序列。与对照组相比,干扰同源重组修复相关基因以及miR-155-5p过表达均可增强卵巢癌细胞UWB1.289对PARP抑制剂的敏感性。结论:miR-155-5p可能通过影响同源重组修复基因增强卵巢癌细胞UWB1.289对PARP抑制剂的敏感性。  相似文献   

16.
MicroRNAs are beneficial for cancer therapy as they can simultaneously downregulate multiple targets involved in diverse biological pathways related to tumor development. In papillary thyroid cancer, many microRNAs were identified as differentially expressed factors in tumor tissues. In another way, recent studies revealed cell proliferation, cell cycling, apoptosis, and autophagy are critical pathways controlling papillary thyroid cancer development and progression. As miR-524-5p was approved as a cancer suppressor targeting multiple genes in several types of cancer cells, this study aims to characterize the role of miR-524-5p in the thyroid cancer cell. The expression of miR-524-5p was decreased in the papillary thyroid cancer tissues and cell lines, while forkhead box E1 (FOXE1) and ITGA3 were increased. In the clinical case, expression of miR-524-5p, FOXE1, and ITGA3 were significantly correlated with papillary thyroid cancer development and progression. FOXE1 and ITGA3 were approved as direct targets of miR-524-5p. miR-524-5p could inhibit papillary thyroid cancer cell viability, migration, invasion, and apoptosis through targeting FOXE1 and ITGA3. Cell cycling and autophagy pathways were disturbed by downregulation of FOXE1 and ITGA3, respectively. Collectively, miR-524-5p targeting on FOXE1 and ITGA3 prevents thyroid cancer progression through different pathways including cell cycling and autophagy.  相似文献   

17.
Emerging evidence has shown that the long noncoding RNA urothelial carcinoma–associated 1 (UCA1) plays a tumor-promoting role in colorectal cancer, while miR-28-5p shows tumor-inhibitory activity in several tumor types. However, the mechanisms both of these in colon cancer progression are still unknown. In this work, the detailed roles and mechanisms of UCA1 and its target genes in colon cancer were studied. The results showed that UCA1 was upregulated in colon cancer tissues when compared with the adjacent nonhumorous tissues, as well as in the various colon cancer cell lines, but the expression of miR-28-5p showed an opposite trend. Furthermore, a high UCA1 level in colon cancer tissues is positively associated with the tumor size and advanced tumor stages. Functional assays revealed that both UCA1 knockdown and miR-28-5p overexpression could inhibit colon cancer cell growth and migration. Further mechanistic studies indicated that UCA1 knockdown played tumor suppressive roles in SW480 and HT116 cells through binding with miR-28-5p. We also, for the first time, identified HOXB3 as the target gene of miR-28-5p and that HOXB3 overexpression could mediate the functions of UCA1 in cell proliferation and migration of colon cancer cells. In conclusion, our data provided evidence for the regulatory network of UCA1/miR-28-5p/HOXB3 in colon cancer, suggesting that UCA1, miR-28-5p, and HOXB3 are the potential targets for colon cancer therapy.  相似文献   

18.
19.
Growing evidence suggested that the long noncoding RNAs (lncRNAs) regulate several pathophysiological processes in tumorigenesis and may be new biomarkers for tumor therapy. In this study, we studied the expression and role of lncRNA MT1JP in the development of bladder cancer. We demonstrated that the expression of MT1JP was downregulated in bladder tumor samples and cell lines. Ectopic expression of MT1JP suppressed cell proliferation, cycle, and invasion in bladder cancer. In addition, our result suggested that miR-214-3p overexpression decreased the luciferase activity of wild-type MT1JP but not mutated-type MT1JP and elevated expression of MT1JP decreased miR-214-3p expression in the bladder cancer cell. Furthermore, we indicated that the expression of miR-214-3p was upregulated in bladder tumor samples and cell lines. Ectopic expression of miR-214-3p promoted cell proliferation, cycle, and invasion in bladder cancer. MT1JP suppressed cell proliferation, cycle, and invasion via negative modulation of miR-214-3p in bladder cancer. These data suggested that lncRNA MT1JP acts a tumor suppressor gene in bladder cancer progression, considering MT1JP as a new therapeutic target in bladder cancer.  相似文献   

20.
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a “sponge” for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号