首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A simple, highly sensitive and validated spectrofluorimetric method was applied in the determination of clonazepam (CLZ). The method is based on reduction of the nitro group of clonazepam with zinc/CaCl2, and the product is then reacted with 2‐cyanoacetamide (2‐CNA) in the presence of ammonia (25%) yielding a highly fluorescent product. The produced fluorophore exhibits strong fluorescence intensity at ?em = 383 nm after excitation at ?ex = 333 nm. The method was rectilinear over a concentration range of 0.1–0.5 ng/mL with a limit of detection (LOD) of 0.0057 ng/mL and a limit of quantification (LOQ) of 0.017 ng/mL. The method was fully validated and successfully applied to the determination of CLZ in its tablets with a mean percentage recovery of 100.10 ± 0.75%. Method validation according to ICH Guidelines was evaluated. Statistical analysis of the results obtained using the proposed method was successfully compared with those obtained using a reference method, and there was no significance difference between the two methods in terms of accuracy and precision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A new, simple and sensitive spectrofluorimetric method has been developed for the determination of aliskiren (ALS) in dosage forms and human urine. The method is based on the reaction between ALS and fluorescamine in borate buffer solution, pH 9, to give a highly fluorescent derivative which is measured at 482 nm after excitation at 382 nm. The factors affecting the reaction were carefully studied. The fluorescence intensity concentration plots were rectilinear over the range 140–1400 ng/mL with a limit of detection 13.47 ng/mL and limit of quantitation 40.81 ng/mL. The developed method was successfully applied to the analysis of the drug in tablets and human urine; the average recoveries (n = 6) were 99.88 ± 0.38% and 99.57 ± 0.44%, respectively. The analytical performance of the method was fully validated and the results were satisfactory. The stability of the drug was studied by subjecting it to acidic, basic, oxidative and thermal degradation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and accurate spectrofluorimetric method has been developed for the determination of sulpiride in pharmaceutical preparations and human plasma. The developed method is based on the derivatization reaction of 2‐cyanoacetamide with sulpiride in 30% ammonical solution. The fluorescent derivatized reaction product exhibited maximum fluorescence intensity at 379 nm after excitation at 330 nm. The optimum conditions for derivatization reactions were studied and the fluorescence intensity versus concentration plot was found to be linear over the concentration range 0.2–20.0 µg/mL with a correlation coefficient of 0.9985. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.82 and 2.73 ng/mL, respectively. The proposed method was validated according to ICH guidelines. The effects of common excipients and co‐administered drugs were also studied. The accuracy of the method was checked using the standard addition method and percent recoveries were found to be in the range of 99.00–101.25% for pharmaceutical preparations and 97.00–97.80% for spiked human plasma. The method was successfully applied to commercial formulations and the results obtained for the proposed method were compared with a high‐performance liquid chromatography reference method and statistically evaluated using the Student's t‐test for accuracy and the variance ratio F‐test for precision. A reaction pathway was also proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of azelastine HCl (AZL) in either its pure state or pharmaceutical dosage form. The proposed method was based on measuring the native fluorescence of the studied drug in 0.2 M H2SO4 at λem = 364 nm after excitation at λex = 275 nm. Different experimental parameters were studied and optimized carefully to obtain the highest fluorescence intensity. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over a concentration range of 10–250 ng/mL, with a limit of detection of 1.52 ng/mL and limit of quantitation of 4.61 ng/mL. Moreover, the method was successfully applied to pharmaceutical preparations, with percent recovery values (± SD) of 99.96 (± 0.4) and 100.1 (± 0.52) for nasal spray and eye drops, respectively. The results were in good agreement with those obtained by the comparison method, as revealed by Student's t‐test and the variance ratio F‐test. The method was extended to study the stability of AZL under stress conditions, where the drug was exposed to neutral, acidic, alkaline, oxidative and photolytic degradation according to International Conference on Harmonization (ICH) guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and selective immuno‐nanogold resonance scattering spectral assay was developed for the determination of trace hapten penicillin G, based on the resonance scattering (RS) effect of the nanogold at 560 nm, and the nanogold‐labelled immunoreaction took place in pH 5.4 phosphate citric acid buffer solutions and in the presence of polythylene glycol (PEG). The nanogold‐labelled immunocomplex formed more and more with addition of penicillin G. The enhanced RS intensity at 560 nm ΔIRS was linear to the penicillin G concentration in the range 7.5–1700 ng/mL, with a detection limit of 0.78 ng/mL. The results indicate that the immunonanogold‐labelled RS spectral assay has a high specificity and sensitivity for quantitative determination of penicillin G in raw milk samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We describe the development and validation of a new, simple, sensitive and cost‐effective method for the determination of ceftriaxone in commercial formulations and spiked human plasma. The method proposes the conversion of ceftriaxone into a fluorescent product by reacting with ortho‐phthalaldehyde (OPA) in the presence of sulfite at room temperature. The reaction medium is buffered to pH 10 using borate buffer. The derivatized reaction product is highly fluorescent and exhibits maximum fluorescence intensity at λem = 386 nm after excitation at λex = 324 nm. The experimental parameters affecting progress of the derivatization reaction were carefully studied and optimized. Under optimum experimental conditions, the method has an excellent correlation coefficient of 0.9984 with a broad linear range of 0.4?20 µg/mL. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 1.30 × 10?3 and 3.90 × 10?3 µg/mL, respectively. The interference effects of common excipients on the quantification of drug were investigated and no interference effect was observed. The proposed method has been successfully applied to the determination of ceftriaxone in pharmaceutical formulations and spiked human plasma samples. The method has been validated statistically through percent recovery studies using standard addition and by comparison with a reference HPLC method. The developed method exhibits excellent inter‐ and intraday precision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive spectrofluorimetric method was developed for the determination of tizanidine in human plasma, urine and pharmaceutical preparations. The method is based on reaction of tizanidine with 1‐dimethylaminonaphthalene‐5‐sulphonyl chloride (dansyl chloride) in an alkaline medium to form a highly fluorescent derivative that was measured at 511 nm after excitation at 383 nm. The different experimental parameters affecting the fluorescence intensity of tizanidine was carefully studied and optimized. The fluorescence–concentration plots were rectilinear over the ranges 50–500 and 20–300 ng/mL for plasma and urine, respectively, detection limits of 1.81 and 0.54 ng/mL and quantification limits of 5.43 and 1.62 ng/mL for plasma and urine, respectively. The method presents good performance in terms of linearity, detection and quantification limits, precision, accuracy and specificity. The proposed method was successfully applied for the determination of tizanidine in pharmaceutical preparations. The results obtained were compared with a reference method, using t‐ and F‐tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, sensitive and rapid flow injection analysis (FIA) method with resonance light scattering (RLS) was described for the determination of propafenone (PPF). The method was based on the ion‐association reaction of 12‐tungstophosphoric acid (TP) with propafenone. In pH 1.0 acidic medium, TP reacted with PPF to form an ion‐associate complex, which resulted in a significant enhancement of RLS intensity. The maximum scattering peak was located at 340 nm, the RLS intensity was proportional to the concentration of PPF in the range 0.003–9.0 µg/mL, and the detection limit (3σ) of 1.0 ng/mL was obtained at a sampling rate of 60 samples/h. The feasible reaction conditions and FIA parameters for the system were optimized. The method proposed in this paper shows satisfactory reproducibility with a relative standard deviation (RSD) of 2.1% for 10 successive determinations of 2.0 µg/mL PPF. The present method had been successfully applied to the determination of PPF in serum samples and pharmaceutical samples. The results obtained were in agreement with the method used in the Chinese Pharmacopoeia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, sensitive and rapid HPLC method with fluorescence detection for the determination of dimethyl‐4,4′‐dimethoxy‐5,6,5′,6′‐dimethylene dioxybiphenyl‐2,2′‐dicarboxylate (DDB) in the raw material and pill form was developed. Liquid chromatography was performed on a C18 column (250 × 4.6 mm i.d., 5 µm particle size), the mobile phase consisted of methanol and 0.05 M sodium dihydrogen phosphate buffer (80 : 20, v/v), and the apparent pH of the mobile phase was adjusted to 3. The fluorescence detector was operated at excitation/emission wavelengths of 275/400 nm. The proposed method allows the determination of DDB within concentration range 0.1–1.5 µg/mL with a limit of detection of 0.032 µg/mL, a limit of quantification of 0.097 µg/mL and a correlation coefficient of 0.9997. The proposed method has been successfully applied for the analysis of DDB in its pills with a percentage recovery of 98.45 ± 0.32. The method was fully validated according to ICH guidelines. Moreover, the high sensitivity of the method permits its use in an in vitro dissolution test for DDB under simulated intestinal conditions. In addition, the proposed method was extended to a content uniformity test according to USP guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and rapid flow‐injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5–2500 ng/mL and the detection limit (signal‐to‐noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C18) cartridges for solid‐phase extraction. The recoveries were in the range 99 ± 1 to 104 ± 1%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0/F) and the concentration of selenium within the range of 0.16‐4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se‐enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive, simple and rapid spectrofluorimetric method was developed for the determination of nomifensine in human plasma and urine. The present method was based on the derivatization by fluorescamine in phosphate buffer at pH 4.0 to produce a highly fluorescent product which was measured at 488 nm (excitation at 339 nm). The method was validated according to the ICH guidelines with respect to linearity, limit of detection, limit of quantification, accuracy, precision, recovery and robustness. The assay was linear over the concentration ranges 100–2,000 and 50–2,000 ng/mL for plasma and urine, respectively. The limits of detection were calculated to be 13.9 and 7.5 ng/mL for plasma and urine, respectively. The method was successfully applied to the analysis of the drug in human plasma and urine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and highly sensitive stability‐indicating HPLC method was developed and validated for the determination of the new antidepressant agent, agomelatine (AGM). Separation of AGM from its stress‐induced degradation products was achieved on a BDS Hypersil phenyl column (250 mm × 4.6 mm i.d., 5 µm particle size) using methanol–0.05 M phosphate buffer of pH 2.5 (35: 65, v/v) as a mobile phase with fluorescence detection at 230/370 nm. Naproxen was used as an internal standard. The method satisfied all the validation requirements, as evidenced by good linearity (correlation coefficient of 0.9999, over the concentration range 0.4–40.0 ng/mL), accuracy (recovery average 99.55 ± 0.90%), precision (intra‐day RSD 0.54–1.35% and inter‐day RSD 0.93–1.26%), robustness and specificity. The stability of AGM was investigated under different ICH recommended stress conditions including acidic, alkaline, neutral, oxidative and photolytic. AGM was found to be labile to acidic and alkaline degradation and a kinetic study was conducted to explore its degradation behavior. First‐order degradation rate constants and half‐life times were calculated in each case. The proposed method was applied for the determination of AGM in tablets and spiked human plasma with mean percentage recoveries of 99.87 ± 0.31 (n = 3) and 102.09 ± 5.01 (n = 5), respectively. Hence, the proposed method was successfully applied for the determination of AGM in human volunteer plasma. The results were compared statistically with those obtained by a comparison HPLC method revealing no significant differences between the two methods regarding accuracy and precision. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A simple and rapid liquid chromatographic method was developed and validated for the determination of triclabendazole with high accuracy and precision within 6 min. Good chromatographic separation was achieved using a CLC Shim‐pack C8 (250 × 4.6 mm, 5 µm particle size) using the mobile phase containing a mixture of 0.02 m phosphate buffer and methanol with a ratio of (20 : 80 v/v) at pH 4.0 was pumped at a flow rate of 1.2 mL/min with fluorescence detection for the first time at 338 nm after excitation at 298 nm. Losartan potassium was used as an internal standard. The method showed good linearity in the ranges of 0.05–2.0 µg/mL with limits of detection and quantification of 14.1 and 42.6 ng/mL, respectively. The suggested method was successfully applied for the analysis of triclabendazole in tablets. The high sensitivity of the method enabled the determination of the studied drug in spiked human plasma with mean percentage of recoveries of 99.79 ± 5.09. Statistical evaluation of the data was performed according to ICH Guidelines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In Britton‐Robinson (BR) buffer medium (pH 3.3), carbazochrome sodium sulfonate (CSS) can react with some aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) to form a 1:1 complex by electrostatic attraction, aromatic stacking interaction and Van der Waals' force, resulting in fluorescence quenching of these amino acids. Maximum quenching wavelengths were located at 352 nm (CSS‐Trp system), 303 nm (CSS‐Tyr system) and 284 nm (CSS‐Phe system), respectively. The fluorescence quenching value (ΔF) was proportional to the concentration of CSS in a certain range. The fluorescence quenching method for the determination of CSS showed high sensitivity, with detection limits of 31.3 ng/mL (CSS‐Trp system), 44.6 ng/mL (CSS‐Tyr system) and 315.0 ng/mL (CSS‐Phe system), respectively. The optimum conditions of the reaction conditions and the effect of coexisting substances were investigated and results showed that the method had good selectivity. The method was successfully applied for the rapid determination of CSS in blood and urine samples. Based on the bimolecular quenching constant Kq, the effect of temperature and Stern‐Volmer plots, this study showed that quenching of fluorescence of amino acids by CSS was a static quenching process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A new, specific and sensitive reversed‐phase high‐performance liquid chromatography method was developed for the simultaneous determination of metolazone (MET) and losartan potassium (LOS). Good chromatographic separation was achieved within 6.0 min on a 150 × 4.6 mm i.d., 5 µm Waters, Ireland and ProDIGY 5 ODS 3 100 A column. A mobile phase containing a mixture of methanol and 0.02 M phosphate buffer (65:35, v/v) at pH 3.0 was used. The analysis was performed at a flow rate of 1 mL/min with fluorescence detection at 410 nm after excitation at 230 nm. Aspirin (ASP) was used as an internal standard. The proposed method was rectilinear over 2.0–40.0 (MET) and 40.0–800.0 ng/mL (LOS), with limits of detection of 0.22 and 4.52 ng/mL and limits of quantification of 0.68 and 13.70 ng/mL for MET and LOS, respectively. The method was successfully applied for the simultaneous analysis of the studied drugs in their laboratory‐prepared mixtures, single tablets and co‐formulated tablets. Moreover, the method was applied to an in vitro drug release (dissolution) test. The method was further extended to the determination of LOS in spiked human plasma. Statistical evaluation and comparison of data obtained using the proposed and comparison methods revealed no significant difference between the two methods in addition to good accuracy and precision for the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A valid, sensitive and rapid spectrofluorimetric method has been developed and validated for determination of both tadalafil (TAD) and vardenafil (VAR) either in their pure form, in their tablet dosage forms or spiked in human plasma. This method is based on measurement of the native fluorescence of both drugs in acetonitrile at λem 330 and 470 nm after excitation at 280 and 275 nm for tadalafil and vardenafil, respectively. Linear relationships were obtained over the concentration range 4–40 and 10–250 ng/mL with a minimum detection of 1 and 3 ng/mL for tadalafil and vardenafil, respectively. Various experimental parameters affecting the fluorescence intensity were carefully studied and optimized. The developed method was applied successfully for the determination of tadalafil and vardenafil in bulk drugs and tablet dosage forms. Moreover, the high sensitivity of the proposed method permitted their determination in spiked human plasma. The developed method was validated in terms of specificity, linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), precision and accuracy. The mean recoveries of the analytes in pharmaceutical preparations were in agreement with those obtained from the comparison methods, as revealed by statistical analysis of the obtained results using Student's t‐test and the variance ratio F‐test. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A new simple, rapid and sensitive reversed‐phase liquid chromatographic method was developed and validated for the simultaneous determination of methocarbamol (MET) and aspirin (ASP) in their combined dosage form. The separation of these compounds was achieved within 6.0 min on a CLC Shim‐pack C8 column (250 × 4.6 mm, 5 µm particle size) using isocratic mobile phase consisting of acetonitrile and 0.02 M dihydrogenphosphate buffer (30:70, v/v) at pH = 5.0. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence detection at 277/313 nm for MET and 298/410 nm for ASP using real‐time programming. The selectivity, linearity of calibration, accuracy, inter‐ and intra‐day precision and recovery were examined as parts of the method validation. The concentration–response relationship was linear over concentration ranges of 0.02‐0.20 and 0.02‐0.40 µg/mL for MET and ASP, respectively, with a limit of detection of 6 and 32 ng/mL for MET and ASP, respectively. The proposed method was successfully applied for the analysis of both MET and ASP in prepared tablets with average recoveries of 99.88 ± 0.65% for MET and 100.44 ± 0.78% for ASP. The results were favourably compared to those obtained by a reference method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A new, simple and sensitive spectrofluorimetric method has been developed for the determination of pregabalin (PG) in capsules. The method is based on the reaction between pregabalin and fluorescamine in borate buffer solution of pH 10 to give a highly fluorescent derivative that is measured at 487 nm after excitation at 390 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence intensity concentration plot was rectilinear over the range of 0.01–0.3 µg mL?1 with a lower detection limit of 0.0017 µg mL?1 and limit of quantitation of 0.005 µg mL?1. The developed method was successfully applied to the analysis of the drug in its commercial capsules. The mean percentage recovery of PG in its capsule was 99.93±1.24 (n = 3). Statistical comparison of the results with those of the comparison method revealed good agreement and proved that there was no significant difference in the accuracy and precision of the two methods. A proposed reaction pathway was postulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号