首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Several studies in the past reported influences of electromagnetic emissions of GSM phones on reaction time in humans. However, there are currently only a few studies available dealing with possible effects of the electromagnetic fields emitted by UMTS mobile phones. In our study, 40 healthy volunteers (20 female, 20 male), aged 26.0 years (range 21-30 years) underwent four different computer tests measuring reaction time and attention under three different UMTS mobile phone-like exposure conditions (two exposure levels plus sham exposure). Exposure of the subjects was accomplished by small helical antennas operated close to the head and fed by a generic signal representing the emissions of a UMTS mobile phone under constant receiving conditions as well as under a condition of strongly varying transmit power. In the high exposure condition the resulting peak spatial average exposure of the test subjects in the cortex of the left temporal lobe of the brain was 0.63 W/kg (min. 0.25 W/kg, max. 1.49 W/kg) in terms of 1 g averaged SAR and 0.37 W/kg (min. 0.16 W/kg, max. 0.84 W/kg) in terms of 10 g averaged SAR, respectively. Low exposure condition was one-tenth of high exposure and sham was at least 50 dB below low exposure. Statistical analysis of the obtained test parameters showed that exposure to the generic UMTS signal had no statistically significant immediate effect on attention or reaction. Therefore, this study does not provide any evidence that exposure of UMTS mobiles interferes with attention under short-term exposure conditions.  相似文献   

2.
This study investigates occupational exposure to electromagnetic fields in front of a multi‐band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite‐difference time‐domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency—2100 MHz—results in the highest spatial‐peak SAR averaged over 10 g of tissue, while the whole‐body SAR is similar at all three frequencies. At distances >200 mm from the antenna, the whole‐body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial‐peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial‐peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Bioelectromagnetics 32:234–242, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
In recent years several studies regarding possible effects of radio frequency (RF) electromagnetic fields (EMFs) on cognitive brain function were reported. In many of these studies on awake humans the working tasks were presented visually to the test subjects, e.g., on a computer screen. Therefore, the question of where in the chain of visual perception, brain processing and response a possible effect could be induced seems to be of interest. In this study, possible effects of exposure to a generic 1.97 GHz UMTS-like signal on human visual perception were investigated in a double blinded, crossover study including 58 healthy volunteer subjects (29 male, 29 female), aged 29 +/- 5.1 years (mean +/- SD). Each test subject underwent a battery of four different clinical tests three times (two different exposure levels and sham exposure) to assess selected parameters of visual perception. The generic signals applied to the subjects' head represented the RF emissions of an UMTS mobile phone under constant receiving conditions and the under condition of strongly varying transmit power, i.e., the signal envelope contained low frequency components. In the high exposure condition the resulting average exposure of the test subjects in the cortex of the left temporal lobe of the brain was 0.63 W/kg (1 g averaged SAR) and 0.37 W/kg (10 g averaged SAR). Low exposure condition was one tenth of high exposure and sham was at least 50 dB (corresponding to a factor of 100,000) below low exposure. Statistical evaluation of the obtained test results revealed no statistically significant differences in the investigated parameters of visual perception between the exposure conditions and sham exposure.  相似文献   

4.
An exposure system, consisting of four identical cylindrical waveguide chambers, was developed for studying the effects of radiofrequency (RF) energy on laboratory mice at a frequency of 1.9 GHz. The chamber was characterized for RF dose rate as a function of animal body mass and dose rate variations due to animal movement in the cage. Dose rates were quantified in terms of whole‐body average (WBA) specific absorption rate (SAR), brain average (BA) SAR and peak spatial‐average (PSA) SAR using measurement and computational methods. Measurements were conducted on mouse cadavers in a multitude of possible postures and positions to evaluate the variations of WBA‐SAR and its upper and lower bounds, while computations utilizing the finite‐difference time‐domain method together with a heterogeneous mouse model were performed to determine variations in BA‐SAR and the ratio of PSA‐SAR to WBA‐SAR. Measured WBA‐SAR variations were found to be within the ranges of 9–23.5 W/kg and 5.2–13.8 W/kg per 1 W incident power for 20 and 40 g mice, respectively. Computed BA‐SAR variations were within the ranges of 3.2–10.1 W/kg and 3.3–9.2 W/kg per 1 W incident power for 25 and 30 g mouse models, respectively. Ratios of PSA‐SAR to WBA‐SAR, averaged over 0.5 mg and 5 mg tissue volumes, were observed to be within the ranges of 6–15 and 4–10, respectively. Bioelectromagnetics 33:575–584, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.  相似文献   

6.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
A new head exposure system for double‐blind provocation studies investigating possible effects of terrestrial trunked radio (TETRA)‐like exposure (385 MHz) on central nervous processes was developed and dosimetrically analyzed. The exposure system allows localized exposure in the temporal brain, similar to the case of operating a TETRA handset at the ear. The system and antenna concept enables exposure during wake and sleep states while an electroencephalogram (EEG) is recorded. The dosimetric assessment and uncertainty analysis yield high efficiency of 14 W/kg per Watt of accepted antenna input power due to an optimized antenna directly worn on the subject's head. Beside sham exposure, high and low exposure at 6 and 1.5 W/kg (in terms of maxSAR10g in the head) were implemented. Double‐blind control and monitoring of exposure is enabled by easy‐to‐use control software. Exposure uncertainty was rigorously evaluated using finite‐difference time‐domain (FDTD)‐based computations, taking into account anatomical differences of the head, the physiological range of the dielectric tissue properties including effects of sweating on the antenna, possible influences of the EEG electrodes and cables, variations in antenna input reflection coefficients, and effects on the specific absorption rate (SAR) distribution due to unavoidable small variations in the antenna position. This analysis yielded a reasonable uncertainty of <±45% (max to min ratio of 4.2 dB) in terms of maxSAR10g in the head and a variability of <±60% (max to min ratio of 6 dB) in terms of mass‐averaged SAR in different brain regions, as demonstrated by a brain region‐specific absorption analysis. Bioelectromagnetics 33:594–603, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A framework for the combination of near‐field (NF) and far‐field (FF) radio frequency electromagnetic exposure sources to the average organ and whole‐body specific absorption rates (SARs) is presented. As a reference case, values based on numerically derived SARs for whole‐body and individual organs and tissues are combined with realistic exposure data, which have been collected using personal exposure meters during the Swiss Qualifex study. The framework presented can be applied to any study region where exposure data is collected by appropriate measurement equipment. Based on results derived from the data for the region of Basel, Switzerland, the relative importance of NF and FF sources to the personal exposure is examined for three different study groups. The results show that a 24‐h whole‐body averaged exposure of a typical mobile phone user is dominated by the use of his or her own mobile phone when a Global System for Mobile Communications (GSM) 900 or GSM 1800 phone is used. If only Universal Mobile Telecommunications System (UMTS) phones are used, the user would experience a lower exposure level on average caused by the lower average output power of UMTS phones. Data presented clearly indicate the necessity of collecting band‐selective exposure data in epidemiological studies related to electromagnetic fields. Bioelectromagnetics 34:366–374, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The aim of this study was a dosimetrical analysis of the setup used in the exposure of the heads of domestic pigs to GSM-modulated radio frequency electromagnetic fields (RF-EMF) at 900 MHz. The heads of pigs were irradiated with a half wave dipole using three different exposure routines; short bursts of 1-3 s at two different exposure levels and a continuous 10-min exposure. The electroencephalogram (EEG) was registered continuously during the exposures to search for RF-EMF originated changes. The dosimetry was based on simulations with the anatomical heterogeneous numerical model of the pig head. The simulation results were validated by experimental measurements with the exposure dipole and a homogeneous liquid phantom resembling the pig head. The specific absorption rate (SAR), defined as a maximum average over 10 g tissue mass (SAR(10g)), was 7.3 W/kg for the first set of short bursts and 31 W/kg for the second set of short bursts. The SAR(10g) in the continuous 10-min exposure was 31 W/kg. The estimated uncertainty for the dosimetry was +/-25% (K = 2).  相似文献   

11.
Numerical and experimental methods were employed to assess the individual and collective dosimetry of mice used in a bioassay on the exposure to pulsed radiofrequency energy at 900 MHz in the Ferris-wheel exposure system (Utteridge et al., Radiat. Res. 158, 357-364, 2002). Twin-well calorimetry was employed to measure the whole-body specific absorption rate (SAR) of mice for three body masses (23 g, 32 g and 36 g) to determine the lifetime exposure history of the mice used in the bioassay. Calorimetric measurements showed about 95% exposure efficiency and lifetime average whole-body SARs of 0.21, 0.86, 1.7 and 3.4 W kg(-1) for the four exposure groups. A larger statistical variation in SAR was observed in the smallest mice because they had the largest variation in posture inside the plastic restrainers. Infrared thermography provided SAR distributions over the sagittal plane of mouse cadavers. Thermograms typically showed SAR peaks in the abdomen, neck and head. The peak local SAR at these locations, determined by thermometric measurements, showed peak-to-average SAR ratios below 6:1, with typical values around 3:1. Results indicate that the Ferris wheel fulfills the requirement of providing a robust exposure setup, allowing uniform collective lifetime exposure of mice.  相似文献   

12.
This is the second of the two articles that present modeling data and reasoned arguments for specifying the appropriate crossover frequency at which incident power flux density (Sinc) replaces the peak 10 g averaged value of the specific energy absorption rate (SAR) as the designated basic restriction for protecting against radiofrequency electromagnetic heating effects in the 1–10 GHz range. In our first study, we compared the degree of correlation between these basic restrictions and the peak‐induced tissue temperature rise (ΔT) for a representative range of population/exposure scenarios using simple multi‐planar models exposed to plane wave conditions. In this complementary study, complex heterogeneous head models for an adult and 12‐year‐old child were analyzed at 1, 3, 6, 8, and 10 GHz for a variety of exposure conditions. The complex models indicate that peak ΔT is better correlated with peak 10 g SAR than Sinc at 1 and 3 GHz and with Sinc at 6–10 GHz, in contrast to the results from Part I. Considering the planar and complex body modeling results together, and given the equivocal indications of the two metrics in the 6–10 GHz range, we recommend that the breakpoint be set at 6 GHz. This choice is also based on other considerations such as ease of assessment. We also recommend that the limit level of Sinc should be adjusted to provide a better match with 10 g SAR in the induced tissue temperature rise. Bioelectromagnetics 31:467–478, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The aim of this study was to provide the information necessary to enable the comparison of exposure conditions in different human volunteer studies published by the research groups at the Universities of Turku, Swinburne, and Zurich. The latter applied a setup optimized for human volunteer studies in the context of risk assessment while the first two applied a modified commercial mobile phone for which detailed dosimetric data were lacking. While the Zurich Setup exposed the entire cortex of the target hemisphere, the other two setups resulted in only very localized exposure of the upper cheek, and concentrated on a limited area of the middle temporal gyrus just above the ear. The resulting peak spatial SAR averaged over 1 g of the cortex was 0.19 W/kg of the Swinburne Setup, and 0.31 W/kg for the Turku Setup, compared to 1 W/kg for the Zurich Setup. The average exposure of the thalamus was 5% and 9% of the Zurich Setup results for the Swinburne and Turku Setups, respectively. In general, the phone-based setup results in only reasonably defined exposures in a very limited area around the maximum exposure; the exposure of the rest of the cortex was low, and may vary greatly as a function of the setup, position, and local anatomy. The analysis confirms the need for a carefully designed exposure setup that exposes the relevant brain areas to a well-defined level in human volunteer studies, and shows that studies can only be properly compared and replicated if sufficiently detailed dosimetric information is available.  相似文献   

14.
UMTS communication devices are becoming common in everyday use. This could raise public concern about their possible detrimental effects on human health. The aim of this study, in the framework of the EMF nEAR Project, was to evaluate possible influence of UMTS electromagnetic fields (EMF) exposure on cochlear outer hair cells' (OHCs) functionality in laboratory animals. Forty‐eight male Sprague–Dawley rats were locally exposed (right ear) or sham‐exposed to a controlled UMTS EMF, frequency of 1946 MHz, at SAR level of 10 W/kg, 2 h a day, 5 days a week, for 4 weeks. A group of 12 rats treated with kanamycin (KM) was also included as positive control. Rats were tested by recording Distortion Product Otaoacoustic Emissions (DPOAEs), a non‐invasive test capable of assessing the status of the OHCs in the inner ear. DPOAEs were performed before, during (one or three times a week) and after (1‐week) exposure to the EMF. The analysis of the data shows that no statistically significant differences were found between the audiological signals recorded from the different experimental groups. The ototoxic effect of KM has been confirmed. Bioelectromagnetics 30:385–392, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The level and distribution of radiofrequency energy absorbed in a child's head during the use of a mobile phone compared to those in an adult head has been a controversial issue in recent years. It has been suggested that existing methods that are used to determine specific absorption rate (SAR) and assess compliance with exposure standards using an adult head model may not adequately account for potentially higher levels of exposure in children due to their smaller head size. The present study incorporates FDTD computations of locally averaged SAR in two different anatomically correct adult and child head models using the IEEE standard (Std. C95.3-2002) SAR averaging algorithm. The child head models were obtained by linear scaling of the adult head model to replicate the conditions of previous studies reported in the literature and also by transforming the different adult head models based on data on the external shapes of children's heads. The tissue properties of the adult and corresponding child head models were kept the same. In addition, modeling and experimental measurements were made using three spheres filled with a tissue-equivalent mixture to approximate heads of increasing size. Results show that the peak local average SAR over 1 g and 10 g of tissue and the electromagnetic energy penetration depths are about the same in all of the head models under the same exposure conditions. When making interlaboratory comparisons, the model and the SAR averaging algorithm used must be standardized to minimize controversy.  相似文献   

16.
The proximity of a mobile phone to the human eye raises the question as to whether radiofrequency (RF) electromagnetic fields (EMF) affect the visual system. A basic characteristic of the human eye is its light sensitivity, making the visual discrimination threshold (VDThr) a suitable parameter for the investigation of potential effects of RF exposure on the eye. The VDThr was measured for 33 subjects under standardized conditions. Each subject took part in two experiments (RF-exposure and sham-exposure experiment) on different days. In each experiment, the VDThr was measured continuously in time intervals of about 10 s for two periods of 30 min, having a break of 5 min in between. The sequence of the two experiments was randomized, and the study was single blinded. During the RF exposure, a GSM signal of 902.4 MHz (pulsed with 217 Hz) was applied to the subjects. The power flux density of the electromagnetic field at the subject location (in the absence of the subject) was 1 W/m(2), and numerical dosimetry calculations determined corresponding maximum local averaged specific absorption rate (SAR) values in the retina of SAR(1 g) = 0.007 W/kg and SAR(10 g) = 0.003 W/kg. No statistically significant differences in the VDThr were found in comparing the data obtained for RF exposure with those for sham exposure.  相似文献   

17.
Assessing the whole‐body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi‐path exposure method for heterogeneous realistic human body models. The method is applied for the 6‐year‐old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole‐body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole‐body SAR in the VFB for multi‐path exposure exceeds the whole‐body SAR for worst‐case single‐incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole‐body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Bioelectromagnetics 34:240–251, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The case for a DNA-damaging action produced by radiofrequency (RF) signals remains controversial despite extensive research. With the advent of the Universal Mobile Telecommunication System (UMTS) the number of RF-radiation-exposed individuals is likely to escalate. Since the epigenetic effects of RF radiation are poorly understood and since the potential modifications of repair efficiency after exposure to known cytotoxic agents such as ionizing radiation have been investigated infrequently thus far, we studied the influence of UMTS exposure on the yield of chromosome aberrations induced by X rays. Human peripheral blood lymphocytes were exposed in vitro to a UMTS signal (frequency carrier of 1.95 GHz) for 24 h at 0.5 and 2.0 W/kg specific absorption rate (SAR) using a previously characterized waveguide system. The frequency of chromosome aberrations was measured on metaphase spreads from cells given 4 Gy of X rays immediately before RF radiation or sham exposures by fluorescence in situ hybridization. Unirradiated controls were RF-radiation- or sham-exposed. No significant variations due to the UMTS exposure were found in the fraction of aberrant cells. However, the frequency of exchanges per cell was affected by the SAR, showing a small but statistically significant increase of 0.11 exchange per cell compared to 0 W/kg SAR. We conclude that, although the 1.95 GHz signal (UMTS modulated) does not exacerbate the yield of aberrant cells caused by ionizing radiation, the overall burden of X-ray-induced chromosomal damage per cell in first-mitosis lymphocytes may be enhanced at 2.0 W/kg SAR. Hence the SAR may either influence the repair of X-ray-induced DNA breaks or alter the cell death pathways of the damage response.  相似文献   

19.
The aim of this study was to evaluate the effect of modulated microwave exposure on human EEG of individual subjects. The experiments were carried out on four different groups of healthy volunteers. The 450 MHz microwave radiation modulated at 7 Hz (first group, 19 subjects), 14 and 21 Hz (second group, 13 subjects), 40 and 70 Hz (third group, 15 subjects), 217 and 1000 Hz (fourth group, 19 subjects) frequencies was applied. The field power density at the scalp was 0.16 mW/cm(2). The calculated spatial peak SAR averaged over 1 g was 0.303 W/kg. Ten cycles of the exposure (1 min off and 1 min on) at fixed modulation frequencies were applied. All subjects completed the experimental protocols with exposure and sham. The exposed and sham-exposed subjects were randomly assigned. A computer also randomly assigned the succession of modulation frequencies. Our results showed that microwave exposure increased the EEG energy. Relative changes in the EEG beta1 power in P3-P4 channels were selected for evaluation of individual sensitivity. The rate of subjects significantly affected is similar in all groups except for the 1000 Hz group: in first group 3 subjects (16%) at 7 Hz modulation; in second group 4 subjects (31%) at 14 Hz modulation and 3 subjects (23%) at 21 Hz modulation; in third group 3 subjects (20%) at 40 Hz and 2 subjects (13%) at 70 Hz modulation; in fourth group 3 subjects (16%) at 217 Hz and 0 subjects at 1000 Hz modulation frequency.  相似文献   

20.
Modern mobile phones emit electromagnetic fields (EMFs) ranging from 900 to 2000 MHz which are suggested to have an influence on well-being, attention and neurological parameters in mobile phone users. To date most studies have investigated Global System for Mobile Communications (GSM)-EMF and only very few studies were concerned with Universal Mobile Telecommunications System (UMTS)-EMF. Consequently, we tested the effects of both types of EMF, 1950 MHz UMTS (SAR 0.1 and 1 W/kg) and pulsed 900 MHz GSM (1 W/kg), on well-being and vigilance-controlled resting electroencephalogram (eyes closed) in 15 healthy, right-handed subjects. A double-blind, randomised, crossover application of the test procedure was used. Neither the UMTS- nor the GSM-EMF produced any significant changes in the measured parameters compared to sham exposure. The results do not give any evidence for a deleterious effect of the EMF on normal healthy mobile phone users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号