首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central inhibition of the acid-sensing hASIC1a channel, acting upstream of the opiate system, might serve to treat any type of pain, avoiding the unwanted addiction problems of the opioid drugs. To this end, inhibition of hASIC1a channel by PcTx1, a peptide from the Trinidad chevron tarantula, is under development. New inhibitors of the hASIC1a channel are also being sought, in the hope of further modulating the activity, from which antiplasmodial amidine and guanidine phenyl drugs have emerged as promising candidates. However, how such current inhibition takes place remains obscure from the molecular point of view, hindering any further progress in developing drugs. Therefore, the nature of the binding sites, and how they are reached by the amidine-guanidine drugs, was investigated here via automated docking and molecular dynamics with hASIC1a homology models. This study has revealed that this ion channel is rich in binding sites, and that flexible drugs, such as nafamostat, may penetrate it in a snake-like elongated conformation. Then, crawling like a snake through temporary holes in the protein, nafamostat either simply flips, or changes to a high-energy folded conformation to become adapted to the shape of the binding site.  相似文献   

2.
Investigated here are interactions of C-terminal amidated peptides with the hASIC1a acid-sensing ion channel. The peptides comprise endogenous FMRFa, present in the western Atlantic clam Sunray Venus, and FIRFa, present in cephalopods, as well as non-endogenous ones for comparison. The interaction is investigated by automated docking. The resulting key hASIC1a-FMRFa complex, set in a lipidic POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane surrounded by H(2) O and Na(+) -neutralized, was also investigated by molecular dynamics. It was observed that all investigated peptides become encapsulated into the ion channel, on one side by the thumb and finger of a subunit, and, on the opposite side, by the knuckle and β-ball of a second subunit. The third subunit is not involved. This is much the same binding site that was disclosed previously by both a similar computational approach, and electrophysiological and binding experiments for the hASIC1a ion channel-blocker tarantula toxin PCTX1. This paves the way to a better understanding of the role of these peptides in invertebrates.  相似文献   

3.
This work was devised to unravel, along replica‐exchange molecular‐dynamics (REMD) simulations, the conformation in solution of the TM1 and TM2 transmembrane domains of the homotrimeric cASIC1a ion channel. This includes the head of TM1 and tail of TM2 that had previously defied X‐ray diffraction analysis in the crystal. The structure of the open‐channel complex of cASIC1a with psalmotoxin 1 (PcTx1) was chosen here as a basis, although, to make the simulations affordable, the procedure was limited to the missing portions, including a few adjacent α‐helical turns. The latter were held fixed during the simulations. Reassembling the whole subunit, by superimposition of the fixed portions, resulted in diving of both TM1 and TM2 as continuous α‐helices into the cytoplasm. At completion of this work, it appeared, from similar X‐ray diffraction studies, that TM2 for both the complex of cASIC1a with the coral snake MitTx toxin, and the isolated desensitized ion channel, is discontinuous, with the triad G443‐A444‐S445 taking an extended, belt‐like conformation. In this way, a filter ring against hydrated ions is formed by G443 in the trimer. Our REMD examination of this complex revealed a strong resistance by G443, and only that residue, to take dihedral‐angle values compatible with an α‐helical conformation. This suggests that the flexibility of glycine alone does not explain formation of the extended, belt‐like conformation of the triad G443‐A444‐S445. This also requires cooperation in the trimer.  相似文献   

4.
Acid-sensing ion channels are ligand/proton-gated ion channels belonging to the family of the degenerin/epithelial Na+ channel (DEG/ENaC). They function as a sodium-selective pore for Ca2+ entry into neuronal cells during pathological conditions. The blocking of this channel has therapeutic importance, because at basal physiological pH (7.2), it is in a closed state and under a more acidic condition, and the ASIC1a ion channel is activated. To investigate the different states of the hASIC1a channel based on mutational analysis, structure-based virtual screening and molecular dynamics simulation studies. The system showed stability after 30 ns (after 1500 frame), and it was stabilized to an average value around 2.2Å. During the simulation, the ion channel residues in persistent contact with toxin PcTx1 were D237, E238, D347, D351, E219 and E355. These residues are important physiologically for the activation of the channel. From in silico alanine scanning, the significant hotspots obtained in hASIC1 are E344, P347, F352, D351, E355 and E219. From the sitemap analysis, it was evident that the sitemap found one of the active sites at the PcTx1 binding site with a site score of 1.086 and a D-score of 1.035 for hASIC1. We obtained a few promising hits and final potential hits from the virtual screening in hASIC1 that made interactions with the residues in the acidic pocket (E344, P347, F352, D351, E355 and E219). Based on these studies, the hits and scaffolds of potential therapeutic interest against various pathological conditions are associated with hASIC1a for future studies.  相似文献   

5.
Aptamers are rare functional nucleic acids with binding affinity to and specificity for target ligands. Recent experiments have lead to the proposal of an induced‐fit binding mechanism for L ‐argininamide (Arm) and its binding aptamer. However, at the molecular level, this mechanism between the aptamer and its coupled ligand is still poorly understood. The present study used explicit solvent molecular dynamics (MD) simulations to examine the critical bases involved in aptamer‐Arm binding and the induced‐fit binding process at atomic resolution. The simulation results revealed that the Watson‐Crick pair (G10‐C16), C9, A12, and C17 bases play important roles in aptamer‐Arm binding, and that binding of Arm results in an aptamer conformation optimized through a general induced‐fit process. In an aqueous solution, the mechanism has the following characteristic stages: (a) adsorption stage, the Arm anchors to the binding site of aptamer with strong electrostatic interaction; (b) binding stage, the Arm fits into the binding site of aptamer by hydrogen‐bond formation; and (c) complex stabilization stage, the hydrogen bonding and electrostatic interactions cooperatively stabilize the complex structure. This study provides dynamics information on the aptamer‐ligand induced‐fit binding mechanism. The critical bases in aptamer‐ligand binding may provide a guideline in aptamer design for molecular recognition engineering.  相似文献   

6.
For various neurodegenerative disorders like Alzheimer's and Parkinson’s diseases, selective and reversible MAO‐B inhibitors have a great therapeutic value. In our previous study, we have shown that a series of methoxylated chalcones with F functional group exhibited high binding affinity toward human monoamine oxidase‐B (hMAO‐B). In continuation of our earlier study and to extend the understanding of the structure–activity relationships, a series of five new chalcones were studied for their inhibition of hMAO. The results demonstrated that these compounds are reversible and selective hMAO‐B inhibitors with a competitive mode of inhibition. The most active compound, (2E)‐1‐(4‐hydroxyphenyl)‐3‐[4‐(trifluoromethyl)phenyl]prop‐2‐en‐1‐one, exhibited a Ki value of 0.33 ± 0.01 μm toward hMAO‐B with a selectivity index of 26.36. A molecular docking study revealed that the presence of a H‐bond network in hydroxylated chalcone with the N(5) atom of FAD is crucial for MAO‐B selectivity and potency.  相似文献   

7.
Human MICAL1 is a member of a recently discovered family of multidomain proteins that couple a FAD‐containing monooxygenase‐like domain to typical protein interaction domains. Growing evidence implicates the NADPH oxidase reaction catalyzed by the flavoprotein domain in generation of hydrogen peroxide as a second messenger in an increasing number of cell types and as a specific modulator of actin filaments stability. Several proteins of the Rab families of small GTPases are emerging as regulators of MICAL activity by binding to its C‐terminal helical domain presumably shifting the equilibrium from the free – auto‐inhibited – conformation to the active one. We here extend the characterization of the MICAL1–Rab8 interaction and show that indeed Rab8, in the active GTP‐bound state, stabilizes the active MICAL1 conformation causing a specific four‐fold increase of kcat of the NADPH oxidase reaction. Kinetic data and small‐angle X‐ray scattering (SAXS) measurements support the formation of a 1:1 complex between full‐length MICAL1 and Rab8 with an apparent dissociation constant of approximately 8 μM. This finding supports the hypothesis that Rab8 is a physiological regulator of MICAL1 activity and shows how the protein region preceding the C‐terminal Rab‐binding domain may mask one of the Rab‐binding sites detected with the isolated C‐terminal fragment. SAXS‐based modeling allowed us to propose the first model of the free full‐length MICAL1, which is consistent with an auto‐inhibited conformation in which the C‐terminal region prevents catalysis by interfering with the conformational changes that are predicted to occur during the catalytic cycle.  相似文献   

8.
On T cell receptor (TCR) stimulation, src homology 2 domain‐containing transforming protein C1 (SHC1) had been found to bind the tyrosine‐phosphorylated CD247 chain of the receptor via its src homology 2 (SH2) domain, delivering signals that control T cell development and activation. However, how the phosphorylation of CD247 led to the instant binding has not been characterized clearly. To study the binding process in detail, we simulated and compared the interaction processes of the SH2 domain with CD247 and phosphorylated CD247, respectively. Unexpectedly, the simulation revealed that SHC1 can also bind the nonphosphorylated CD247 peptide, which was further validated to be a weak binding by affinity pull‐down experiment. The molecular dynamics (MD) simulation also revealed that the CD247 peptide formed a folding conformation with its Leu209 inserted into the hydrophobic binding pocket in SHC1. And on phosphorylation, it was the electrostatic attraction between the CD247 Tyr(P)206 and the SHC1 Tyr(P)‐binding pocket that destroyed the folding conformation of the nonphosphorylated CD247 and, aided by the electrostatic attraction between SHC1 and the Asp203 of CD247, led to the extended conformation of the phosphorylated CD247 binding to SHC1 strongly. The results suggest that nonphosphorylated CD247 can recruit SHC1 in advance to prepare for the instant needs for SHC1 on TCR stimulation. In view of the ubiquity of phosphorylation in protein interaction regulation, we think this study also exemplified the usefulness of MD in more interactome research involving phosphorylation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Phafin2 is a phosphatidylinositol 3‐phosphate (PtdIns(3)P) binding protein involved in the regulation of endosomal cargo trafficking and lysosomal induction of autophagy. Binding of Phafin2 to PtdIns(3)P is mediated by both its PH and FYVE domains. However, there are no studies on the structural basis, conformational stability, and lipid interactions of Phafin2 to better understand how this protein participates in signaling at the surface of endomembrane compartments. Here, we show that human Phafin2 is a moderately elongated monomer of ~28 kDa with an intensity‐average hydrodynamic diameter of ~7 nm. Circular dichroism (CD) analysis indicates that Phafin2 exhibits an α/β structure and predicts ~40% random coil content in the protein. Heteronuclear NMR data indicates that a unique conformation of Phafin2 is present in solution and dispersion of resonances suggests that the protein exhibits random coiled regions, in agreement with the CD data. Phafin2 is stable, displaying a melting temperature of 48.4°C. The folding‐unfolding curves, obtained using urea‐ and guanidine hydrochloride‐mediated denaturation, indicate that Phafin2 undergoes a two‐state native‐to‐denatured transition. Analysis of these transitions shows that the free energy change for urea‐ and guanidine hydrochloride‐induced Phafin2 denaturation in water is ~4 kcal mol?1. PtdIns(3)P binding to Phafin2 occurs with high affinity, triggering minor conformational changes in the protein. Taken together, these studies represent a platform for establishing the structural basis of Phafin2 molecular interactions and the role of the two potentially redundant PtdIns(3)P‐binding domains of the protein in endomembrane compartments.  相似文献   

10.
11.
The hERG1 gene (Kv11.1) encodes a voltage‐gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template‐driven de‐novo design with ROSETTA‐membrane modeling using side‐chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2‐Kv2.1 chimera channels, the missing parts are modeled de‐novo. The impact of several alignments on the structure of the S4 helix in the voltage‐sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage‐sensor domain; and the topology of the extracellular S5‐pore linker compared with that established by toxin foot‐printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll‐like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand‐binding regions of bacteria‐sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N‐glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post‐translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state‐of‐the‐art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein‐coding polymorphisms.  相似文献   

14.
Cystatin C originally identified as a cysteine proteases inhibitor has a broad spectrum of biological roles ranging from inhibition of extracellular cysteine protease activities, bone resorption, and modulation of inflammatory responses to stimulation of fibroblasts proliferation. There is an increasing number of evidence to suggest that human cystatin C (hCC) might play a protective role in the pathophysiology of sporadic Alzheimer's disease. In vivo and in vitro results well documented the association of hCC with Aβ and the hCC‐induced inhibition of Aβ fibril formation. In our earlier work, using a combination of selective proteolytic methods and MS spectroscopy, C‐terminal fragment hCC(101‐117) was identified as the Aβ‐binding region. The fragment of Aβ peptide responsible for the complex formation with hCC was found in the middle, highly hydrophobic part, Aβ(17‐24). Structures and affinities of both Aβ and hCC binding sites were characterized by the enzyme‐linked immunosorbent assay‐like assay, by surface plasmon resonance, and by nano‐ESI‐FTICR MS of the hCC–Aβbinding peptide complexes. In the in vitro inhibition studies, the binding cystatin sequence, hCC(101‐117), revealed the highest relative inhibitory effect toward Aβ‐fibril formation. Herein, we present further studies on molecular details of the hCC‐Aβ complex. With Ala substitution, affinity experiments, and enzyme‐linked immunosorbent assay‐like assays for the Aβ‐binding fragment, hCC(101‐117), and its variants, the importance of individual amino acid residues for the protein interaction was evaluated. The results were analyzed using hCC(101‐117) nuclear magnetic resonance structural data with molecular dynamics calculations and molecular modeling of the complexes. The results point to conformational requirements and special importance of some amino acid residues for the protein interaction. The obtained results might be helpful for the design of low molecular compounds modulating the biological role of both proteins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
During assembly of the E. coli pre‐replicative complex (pre‐RC), initiator DnaA oligomers are nucleated from three widely separated high‐affinity DnaA recognition sites in oriC. Oligomer assembly is then guided by low‐affinity DnaA recognition sites, but is also regulated by a switch‐like conformational change in oriC mediated by sequential binding of two DNA bending proteins, Fis and IHF, serving as inhibitor and activator respectively. Although their recognition sites are separated by up to 90 bp, Fis represses IHF binding and weak DnaA interactions until accumulating DnaA displaces Fis from oriC. It remains unclear whether high‐affinity DnaA binding plays any role in Fis repression at a distance and it is also not known whether all high‐affinity DnaA recognition sites play an equivalent role in oligomer formation. To examine these issues, we developed origin‐selective recombineering methods to mutate E. coli chromosomal oriC. We found that, although oligomers were assembled in the absence of any individual high‐affinity DnaA binding site, loss of DnaA binding at peripheral sites eliminated Fis repression, and made binding of both Fis and IHF essential. We propose a model in which interaction of DnaA molecules at high‐affinity sites regulates oriC DNA conformation.  相似文献   

16.
Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function.  相似文献   

17.
The structural similarities between N1 substituted 1,4‐dihydropyridines and the known gp41 inhibitors, NB ‐2 and NB ‐64 , were considered in the current research for the design of some novel anti‐HIV‐1 agents. A series of novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti‐HIV‐1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV‐1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 μm . Among the tested compounds, 1c , 1d and 1e showed potent anti‐HIV‐1 activity against P24 expression at 100 μm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT‐2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H‐bonds with the gp41 binding site. The Lipinski's ‘rule of five’ and drug‐likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's ‘rule of five’ and had drug‐like features. The findings of this study suggest that novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti‐HIV‐1 agents.  相似文献   

18.
Self‐assembly of natural or designed peptides into fibrillar structures based on β‐sheet conformation is a ubiquitous and important phenomenon. Recently, organic solvents have been reported to play inductive roles in the process of conformational change and fibrillization of some proteins and peptides. In this study, we report the change of secondary structure and self‐assembling behavior of the surfactant‐like peptide A6K at different ethanol concentrations in water. Circular dichroism indicated that ethanol could induce a gradual conformational change of A6K from unordered secondary structure to β‐sheet depending upon the ethanol concentration. Dynamic light scattering and atomic force microscopy revealed that with an increase of ethanol concentration the nanostructure formed by A6K was transformed from nanosphere/string‐of‐beads to long and smooth fibrils. Furthermore, Congo red staining/binding and thioflavin‐T binding experiments showed that with increased ethanol concentration, the fibrils formed by A6K exhibited stronger amyloid fibril features. These results reveal the ability of ethanol to promote β‐sheet conformation and fibrillization of the surfactant‐like peptide, a fact that may be useful for both designing self‐assembling peptide nanomaterials and clarifying the molecular mechanism behind the formation of amyloid fibrils. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Dysregulation of growth and differentiation factor 5 (GDF‐5) signalling, a member of the TGF‐β superfamily, is strongly linked to skeletal malformation. GDF‐5‐mediated signal transduction involves both BMP type I receptors, BMPR‐IA and BMPR‐IB. However, mutations in either GDF‐5 or BMPR‐IB lead to similar phenotypes, indicating that in chondrogenesis GDF‐5 signalling seems to be exclusively mediated through BMPR‐IB. Here, we present structural insights into the GDF‐5:BMPR‐IB complex revealing how binding specificity for BMPR‐IB is generated on a molecular level. In BMPR‐IB, a loop within the ligand‐binding epitope functions similar to a latch allowing high‐affinity binding of GDF‐5. In BMPR‐IA, this latch is in a closed conformation leading to steric repulsion. The new structural data now provide also a molecular basis of how phenotypically relevant missense mutations in GDF‐5 might impair receptor binding and activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号