首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M. Li  M. Yu  C. Liu  H. Zhu  X. He  S. Peng  J. Hua 《Cell proliferation》2013,46(2):223-231

Objectives

Recent lines of evidence have indicated that miR‐34c can play important roles in regulation of the cell cycle, cell senescence and apoptosis of mouse and human tumour cells, spermatogenesis, and male germ‐cell apoptosis. However, there is little information on the effects of miR‐34c on proliferation and apoptosis of livestock male germ cells. The dairy goat is a convenient domestic species for biological investigation and application. The purpose of this study was to investigate the effects of miR‐34c on apoptosis and proliferation of dairy goat male germline stem cells (mGSCs), as well as to determine the relationship between p53 and miR‐34c in this species.

Materials and methods

Morphological observation, miRNA in situ hybridisation (ISH), bromodeoxyuridine staining, flow cytometry, quantitative‐RT‐PCR (Q‐RT‐PCR) and western blotting were utilized to ascertain apoptosis and proliferation of mGSCs, through transfection of miR‐34c mimics (miR‐34c), miR‐34c inhibitor (anti‐miR‐34c), miR‐34c mimics and inhibitors co‐transfected (mixture) compared to control groups.

Results

Results manifested that miR‐34c over‐expression promoted mGSCs apoptosis and suppressed their proliferation. Simultaneously, a variety of apoptosis‐related gene expression was increased while some proliferation‐related genes were downregulated. Accordingly, miR‐34c promoted apoptosis in mGSCs and reduced their proliferation; moreover, expression of miR‐34c was p53‐dependent.

Conclusions

This study is the first to provide a model for study of miRNAs and mechanisms of proliferation and apoptosis in male dairy goat germ cells.
  相似文献   

2.
microRNA (miRNA)在奶山羊雄性生殖细胞和精子发生过程有重要的调控功能。为研究miR-34c对雄性生殖干细胞增殖与分化中的作用,本文利用视黄酸效应基因8(Stra8)在雄性生殖细胞中随年龄增长,以其表达量上调的表达特征为指针,使用实时定量PCR技术筛选分析miRNAs。结果发现,miR-34c与Stra8的表达规律基本一致。在无精症奶山羊的睾丸组织中,发现miR-34c在无精症奶山羊睾丸组织中表达缺失。利用miR-34c模拟物及抑制剂转染奶山羊雄性生殖干细胞,体外转染miR-34c模拟物及其抑制剂,发现miR-34c能够下调Rarg、Stra8与c-Myc基因的表达,减缓奶山羊雄性生殖干细胞的增殖。结果提示,miR-34c可能具有调控奶山羊雄性生殖干细胞的减数分裂的作用,同时抑制其增殖。  相似文献   

3.
Reproduction is required for the survival of all mammalian animals. Spermatogenesis is an essential and complex developmental process that ultimately results in production of haploid spermatozoa. Recent studies demonstrated that Boule and stimulated by retinoic acid 8 (Stra8) played important roles in initiation meiosis in male germ cells. miR‐34c is indispensable in the late steps of spermatogenesis; remarkably, the main function of miR‐34c is to reduce cell proliferation potentiality and promote cellular apoptosis. The objectives of this study were to investigate the expression patterns of Boule, Stra8, P53 and miR‐34c in dairy goat testis and their relationship in male germ line stem cells (mGSCs). The results first revealed the expression patterns of Boule, Stra8, P53 and miR‐34c in 30 dpp, 90 dpp and adult testes of dairy goats. The expression levels of Boule, Stra8, P53 and miR‐34c in adult dairy goat testes were significantly higher than that of 30 dpp. Overexpression of Boule and Stra8 promoted the expression of miR‐34c in dairy goat mGSCs. In our previous study, we showed that miR‐34c was P53 dependent in mGSCs. These results have shown that the up‐regulation of miR‐34c was not due to P53 protein activation but which might be caused by the up‐regulation of Boule and Stra8 promoting the advance of meiosis. In addition, we found retinoic acid would decrease the expression of P53 and miR‐34c, however, did not change the expression of c‐Myc greatly. It suggested that the function of driving differentiation of dairy goat mGSCs by retinoic acid might not be caused by P53. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Spermatogenesis is a highly ordered developmental program that produces haploid male germ cells. The study of male germ cell development in the mouse has provided unique perspectives into the molecular mechanisms that control cell development and differentiation in mammals, including tissue‐specific gene regulatory programs. An intrinsic challenge in spermatogenesis research is the heterogeneity of germ and somatic cell types present in the testis. Techniques to separate and isolate distinct mouse spermatogenic cell types have great potential to shed light on molecular mechanisms controlling mammalian cell development, while also providing new insights into cellular events important for human reproductive health. Here, we detail a versatile strategy that combines Cre‐lox technology to fluorescently label germ cells, with flow cytometry to discriminate and isolate germ cells in different stages of development for cellular and molecular analyses.  相似文献   

5.
6.
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA‐34a (miR‐34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR‐34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild‐type p53 expression. In normal HKCs, the pro‐differentiation effects of increased p53 activity or UVB exposure are miR‐34a‐dependent, and increased miR‐34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR‐34a function, is a direct target of this miRNA in HKCs, and SIRT6 down‐modulation is sufficient to reproduce the miR‐34a pro‐differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR‐34a in normal keratinocytes and keratinocyte‐derived tumours.  相似文献   

7.
8.
9.
To study the effects of microRNA‐98 (miR‐98) on human bone mesenchymal stromal cells (hBMSCs). The patients undergoing hip arthroplasty were selected by inclusion/exclusion criteria for this study. The extracted hBMSCs were detected of osteogenic differentiation by alizarin red S staining, and of cell phenotype by flow cytometry. Bioinformatics, dual luciferase report, western blotting, RT‐PCR and immunoblotting were used in our study. The hBMSCs were divided into miR‐98 mimics, miR‐98 negative control (NC), miR‐98 inhibitors, Mock and miR‐98 inhibitors + siBMP2 groups. Human bone mesenchymal stromal cells were extracted and purified in vitro and had specific cytological morphology, surface markers and abilities of self‐renewal and differentiation. Compared with the NC group and Mock group, the miR‐98 mimics group showed increased miR‐98 level while the miR‐98 inhibitors group decreased miR‐98 level (both P < 0.01). Dual luciferase reporter showed BMP2 was the target gene of miR‐98. The levels of mRNA and protein expression of BMP2, protein expression of RUNX2, alkaline phosphatase activity and osteocalcin content significantly decreased in the miR‐98 mimics group while increased in the miR‐98 inhibitors group and showed no changes in the NC group and Mock group (all P < 0.05). The miR‐98 mimics group showed obviously declined stained red particles and the miR‐98 inhibitors group showed opposite result. After lowering the expression of miR‐98, osteogenic differentiation ability of hBMSCs rose, which was weakened by the transfection with siBMP2. miR‐98 may regulate osteogenic differentiation of hBMSCs by targeting BMP2.  相似文献   

10.
Our study sought to clarify the effects of microRNA‐139‐5p (miR‐139‐5p) in the tumorigenesis and progression of oral squamous cell carcinoma (OSCC) by regulating HOXA9. MiR‐139‐5p and HOXA9 expression in OSCC tissues, tumour adjacent tissues, OSCC cells and normal cells were tested by qRT‐PCR. SAS and CAL‐27 cell lines were selected in among four OSCC cell lines and then transfected with miR‐139‐5p mimics, pEGFP‐HOXA9 and cotransfected with miR‐139‐5p mimics + pEGFP‐HOXA9. We used MTT, colony formation, transwell and wound healing assays to analyse cell viability, proliferation, invasion and migration. The target relationship between miR‐139‐5p and HOXA9 was verified by luciferase reporter assay and Western blot, respectively. MiR‐139‐5p was down‐regulated, whereas HOXA9 was up‐regulated in OSCC tissues and cells. The proliferation, invasion and migration ability of SAS and CAL‐27 cells in miR‐139‐5p mimics group were significantly weaker than those in the control group and the miR‐NC group (< 0.01). MiR‐139‐5p can negatively regulate HOXA9. The proliferation, invasion and migration of SAS and CAL‐27 cells in the miR‐139‐5p mimics + pEGFP‐HOXA9 group were not significantly different from those in the blank control and negative control groups (> 0.05). Our results indicated that miR‐139‐5p could directly inhibit HOXA9, which might be a potential mechanism in inhibiting the proliferation, invasiveness and migration of OSCC cells.  相似文献   

11.
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.  相似文献   

12.
13.
This study investigates whether the anti‐metastasis effect of microRNA‐139 (miR‐139) on hepatocellular carcinoma (HCC) is mediated through regulating c‐fos expression. The expression levels of miR‐139 and c‐fos in human HCC cell sublines with high (MHCC97H) and low (MHCC97L) spontaneous metastatic potentials were quantified using QPCR or Western blot. miR‐139 mimics was transfected into MHCC97H cells to overexpress miR‐139, and miR‐139 inhibitor was transfected into MHCC97L cells to down‐express miR‐139. The effect of overexpression or down‐expression of miR‐139 on c‐fos expression of MHCC97H and MHCC97L cells was evaluated using QPCR and Western blot. The 3′ untranslated region segments of FOS containing the miR‐139 binding sites were amplified by PCR, and the luciferase activity in the transfected cells was assayed. In comparison with the expression level of miR‐139 in MHCC97L cells, the expression level in MHCC97H cells was significantly decreased, whereas c‐Fos was significantly up‐regulated in MHCC97H. The overexpression of miR‐139 significantly inhibited the expression of c‐fos in MHCC97H cells, and the down‐expression of miR‐139 significantly promoted the expression of c‐fos in MHCC97L cells. miR‐139 suppressed the luciferase activity of the pGL‐FOS by approximately 40% compared with the negative control. In vitro cell migration analysis demonstrated that depletion of c‐fos or overexpression of miR‐139 in MHCC97H cells reduced cell migration, whereas overexpression of c‐fos or depletion of miR‐139 in MHCC97L cells increased cell migration. Thus, we got the conclusion that miR‐139 expression is down‐regulated in human HCC cell sublines with high spontaneous metastatic potentials (MHCC97H). Derepression of c‐Fos caused by miR‐139 down‐regulation contributes to the metastasis of HCC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

16.
17.
18.
MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self‐renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR‐10b in regulating the self‐renewal of mouse SSCs. We showed that miR‐10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR‐10b significantly increased the apoptosis of SSCs compared with controls. Kruppel‐like factor 4 was found to be a target gene of miR‐10b in the enhancement of SSC proliferation. These findings further our understanding of the self‐renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility.  相似文献   

19.
20.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号