首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Hepatocellular carcinoma (HCC) is one of the deadliest forms of human liver cancer and does not respond well to conventional therapies. Novel effective treatments are urgently in need. G-protein-coupled kinase 2 (GRK2) is unique serine/threonine kinase that involves in many signaling pathways and regulates various essential cellular processes. Altered levels of GRK2 have been linked with several human diseases including cancer. In this study, we investigated a novel approach for HCC treatment by inducing overexpression of GRK2 in human HCC cells. We found that overexpression of GRK2 through recombinant adenovirus transduction inhibits the growth of human HCC cells. BrdU incorporation assay showed that the growth inhibition caused by elevated GRK2 level was due to reduced cell proliferation but not apoptosis. To examine the anti-proliferative function of increased GRK2 level, we performed cell cycle analysis using propidium iodide staining. We found that the proliferation suppression was associated with G2/M phase cell cycle arrest by the wild-type GRK2 but not its kinase-dead K220R mutant. Furthermore, increased levels of wild-type GRK2 induced upregulation of phosphor-Ser(15) p53 and cyclin B1 in a dose-dependent manner. Our data indicate that the anti-proliferative function of elevated GRK2 is associated with delayed cell cycle progression and is GRK2 kinase activity-dependent. Enforced expression of GRK2 in human HCC by molecular delivery may offer a potential therapeutic approach for the treatment of human liver cancer.  相似文献   

5.
Hepatocellular carcinoma (HCC) is one of the most common visceral malignancies worldwide, with a very high incidence and poor prognosis. Bone morphogenesis protein 4 (BMP4), which belongs to the TGF-β superfamily of proteins, is a multifunctional cytokine, which exerts its biologic effects through SMAD- and non-SMAD-dependent pathways, and is also known to be involved in human carcinogenesis. However, the effects of the BMP4 signaling in liver carcinogenesis are not yet clearly defined. Here, we first show that BMP4 and its receptor, BMPR1A, are overexpressed in a majority of primary HCCs and that it promotes the growth and migration of HCC cell lines in vitro. We also establish that BMP4 can induce HCC cyclin-dependent kinase (CDK)1 and cyclin B1 upregulation to accelerate cell-cycle progression. Our study indicates that the induction of HCC cell proliferation is independent of the SMAD signaling pathway, as Smad4 knockdown of HCC cell lines still leads to the upregulation of CDK1 and cyclin B1 expression after BMP4 treatment. Using mitogen-activated protein/extracellular signal-regulated kinase (MEK) selective inhibitors, the induction of CDK1, cyclin B1 mRNA and protein were shown to be dependent on the activation of MEK/extracellular signal-regulated kinase (ERK) signaling. In vivo xenograft studies confirmed that the BMPR1A-knockdown cells were significantly less tumorigenic than the control groups. Our findings show that the upregulation of BMP4 and BMPR1A in HCC promotes the proliferation and metastasis of HCC cells and that CDK1 and cyclin B1 are important SMAD-independent molecular targets in BMP4 signaling pathways, during the HCC tumorigenesis. It is proposed that BMP4 signaling pathways may have potential as new therapeutic targets in HCC treatment.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Extracellular nucleotides are increasingly recognized as important regulators of growth in a variety of cell types. Recent studies have demonstrated that extracellular ATP is a potent inducer of fibroblast growth acting, at least in part, through an ERK1/2-dependent signaling pathway. However, the contributions of additional signaling pathways to extracellular ATP-mediated cell proliferation have not been defined. By using both pharmacologic and genetic approaches, we found that in addition to ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and p70 S6K-dependent signaling pathways are required for ATP-induced proliferation of adventitial fibroblasts. We found that extracellular ATP acting in part through G(i) proteins increased PI3K activity in a time-dependent manner and transient phosphorylation of Akt. This PI3K pathway is not involved in ATP-induced activation of ERK1/2, implying activation of independent parallel signaling pathways by ATP. Extracellular ATP induced dramatic increases in mTOR and p70 S6K phosphorylation. This activation of the mTOR/p70 S6 kinase (p70 S6K) pathway in response to ATP is because of independent contributions of PI3K/Akt and ERK1/2 pathways, which converge on the level of p70 S6K. ATP-dependent activation of mTOR and p70 S6K also requires additional signaling inputs perhaps from pathways operating through Galpha or Gbetagamma subunits. Collectively, our data demonstrate that ATP-induced adventitial fibroblast proliferation requires activation and interaction of multiple signaling pathways such as PI3K, Akt, mTOR, p70 S6K, and ERK1/2 and provide evidence for purinergic regulation of the protein translational pathways related to cell proliferation.  相似文献   

14.
15.
16.
17.
18.
Hepatocellular carcinoma (HCC) is a malignant tumor and hepatitis B virus X protein (HBx) plays a crucial role in its pathogenesis. The Notch1 signaling pathway is involved in various malignant tumors including liver cancers and down-regulation of Notch-1 may exert anti-tumor effects. Here, we demonstrate that inhibition of Notch1 by plasmid-based shRNA suppresses growth of human hepatic cells transfected with HBx through G0/G1 cell cycle arrest and apoptosis inhibition, possibly linked to the promoted expression of cyclin-dependent kinase inhibitor, P16, and decreased expression of apoptosis inhibitor, Bcl-2. The anti-proliferative and pro-apoptotic effects of Notch1 shRNA in HBx-transformed L02 cell may be partly mediated by down-regulation of nuclear factor-kappaB (NF-κB) binding activities, demonstrating possible cross-talk between Notch-1 and NF-κB signaling pathways. The oncogene HBx may therefore induce malignant transformation of human hepatic cells via Notch1 pathway, indicating that Notch1 plays a crucial role in HBx-related liver cancer and could be an effective therapeutic target for HCC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号