首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triptolide is a diterpenoid triepoxide derived from the traditional Chinese medical herb Tripterygium wilfordii. In the present study, we demonstrated that this phytochemical attenuated colon cancer growth in vitro and in vivo. Using a proteomic approach, we found that 14-3-3 epsilon, a cell cycle- and apoptosis-related protein, was altered in colon cancer cells treated with triptolide. In this regard, triptolide induced cleavage and perinuclear translocation of 14-3-3 epsilon. Taken together, our findings suggest that triptolide may merit investigation as a potential therapeutic agent for colon cancer, and its anticancer action may be associated with alteration of 14-3-3 epsilon.  相似文献   

2.
3.
4.
The proteins of 14‐3‐3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14‐3‐3 isoforms (β, γ, ε, τ, and ζ) during the apoptosis of JURL‐MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C‐terminal amino acids. The observed 14‐3‐3 modifications were partially blocked by caspase‐3 inhibition. In addition to caspases, a non‐caspase protease is likely to contribute to 14‐3‐3's cleavage in an isoform‐specific manner. While 14‐3‐3 γ seems to be cleaved mainly by caspase‐3, the alternative mechanism is essentially involved in the case of 14‐3‐3 τ, and a combined effect was observed for the isoforms ε, β, and ζ. We suggest that the processing of 14‐3‐3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. J. Cell. Biochem. 106: 673–681, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Advancements in genomics, proteomics, and bioinformatics have improved our understanding of gene/protein networks involved in intra‐ and intercellular communication and tumor–host interactions. Using proteomics integrated with bioinformatics, previously we reported overexpression of 14‐3‐3ζ in premalignant oral lesions and oral squamous cell carcinoma tissues in comparison with normal oral epithelium. 14‐3‐3ζ emerged as a novel molecular target for therapeutics and a potential prognostic marker in oral squamous cell carcinoma patients. However, the role of 14‐3‐3ζ in development and progression of oral cancer is not known yet. This study aimed to identify the 14‐3‐3ζ associated protein networks in oral cancer cell lines using IP–MS/MS and bioinformatics. A total of 287 binding partners of 14‐3‐3ζ were identified in metastatic (MDA1986) and nonmetastatic (SCC4) oral cancer cell lines including other 14‐3‐3 isoforms (2%), proteins involved in apoptosis (2%), cytoskeleton (9%), metabolism (16%), and maintenance of redox potential (2%). Our bioinformatics analysis revealed involvement of 14‐3‐3ζ in protein networks regulating cell cycle, proliferation, apoptosis, cellular trafficking, and endocytosis in oral cancer. In conclusion, our data revealed several novel protein interaction networks involving 14‐3‐3ζ in oral cancer progression and metastasis.  相似文献   

6.
7.
8.
9.
14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1′ insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal α-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.  相似文献   

10.
11.
Data from The Cancer Genome Atlas (TCGA) indicate that the expression levels of 14‐3‐3ζ and beclin 1 (a key molecule involved in cellular autophagy) are up‐regulated and positively correlated with each other (R = .5, P < .05) in HCC tissues. Chemoresistance developed in hepatoma cancer cells is associated with autophagy initiation. This study aimed to explore 14‐3‐3ζ’s role in regulating autophagy in HCC cells, with a focus on beclin 1. The co‐localization of 14‐3‐3ζ and beclin 1 was detectable in primary HCC tissues. To simulate in vivo tumour microenvironment (hypoxia), CSQT‐2 and HCC‐LM3 cells were exposed to 2% oxygen for 24 hours. The protein levels of 14‐3‐3ζ and phospho‐beclin 1S295 peaked at 12 hours following hypoxia. Meanwhile, the strongest autophagy flux occurred: LC3II was increased, and p62 was decreased significantly. By sequencing the coding area of BECN 1 gene of CSQT‐2 and HCC‐LM3 cells, we found that the predicted translational products of BECN 1 gene contained RLPS295VP (R, arginine; L, leucine; P, proline; S, serine; V, valine), a classic 14‐3‐3ζ binding motif. CO‐IP results confirmed that 14‐3‐3ζ bound to beclin 1, and this connection was markedly weakened when S295 was mutated into A295 (alanine). Further, 14‐3‐3ζ overexpression prevented phospho‐beclin 1S295 from degradation and enhanced its binding to VPS34, whilst its knockdown accelerated the degradation. Additionally, 14‐3‐3ζ enhanced the chemoresistance of HCC cells to cis‐diammined dichloridoplatium by activating autophagy. Our work reveals that 14‐3‐3ζ binds to and stabilizes phospho‐beclin 1S295 and induces autophagy in HCC cells to resist chemotherapy.  相似文献   

12.
As a highly potent and highly selective oral inhibitor of FLT3/AXL, gilteritinib showed activity against FLT3D835 and FLT3‐ITD mutations in pre‐clinical testing, although its role on colorectal cancer (CRC) cells is not yet fully elucidated. We examined the activity of gilteritinib in suppressing growth of CRC and its enhancing effect on other drugs used in chemotherapy. In this study, we observed that, regardless of p53 status, treatment using gilteritinib induces PUMA in CRC cells via the NF‐κB pathway after inhibition of AKT and activation of glycogen synthase kinase 3β (GSK‐3β). PUMA was observed to be vital for apoptosis in CRC cells through treatment of gilteritinib. Moreover, enhancing induction of PUMA through different pathways could mediate chemosensitization by using gilteritinib. Furthermore, PUMA deficiency revoked the antitumour role of gilteritinib in vivo. Thus, our results indicate that PUMA mediates the antitumour activity of gilteritinib in CRC cells. These observations are critical for the therapeutic role of gilteritinib in CRC.  相似文献   

13.
14.
15.
16.
17.
18.
Toll‐like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double‐stranded RNA analogue poly I:C induces apoptosis of androgen‐sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3‐mediated apoptosis and the in vivo efficacy of poly I:C‐based therapy. We show that interferon regulatory factor‐3 (IRF‐3) signalling plays an essential role in TLR3‐mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE‐1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well‐established human androgen‐sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C‐treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF‐3 in both human normal and PCa clinical samples, potentially envisaging poly I:C‐based therapy for PCa.  相似文献   

19.
Altered phosphorylation and trafficking of connexin 43 (Cx43) during acute ischemia contributes to arrhythmogenic gap junction remodeling, yet the critical sequence and accessory proteins necessary for Cx43 internalization remain unresolved. 14‐3‐3 proteins can regulate protein trafficking, and a 14‐3‐3 mode‐1 binding motif is activated upon phosphorylation of Ser373 of the Cx43 C‐terminus. We hypothesized that Cx43Ser373 phosphorylation is important to pathological gap junction remodeling. Immunofluorescence in human heart reveals the enrichment of 14‐3‐3 proteins at intercalated discs, suggesting interaction with gap junctions. Knockdown of 14‐3‐3τ in cell lines increases gap junction plaque size at cell–cell borders. Cx43S373A mutation prevents Cx43/14‐3‐3 complexing and stabilizes Cx43 at the cell surface, indicating avoidance of degradation. Using Langendorff‐perfused mouse hearts, we detect phosphorylation of newly internalized Cx43 at Ser373 and Ser368 within 30 min of no‐flow ischemia. Phosphorylation of Cx43 at Ser368 by protein kinase C and Ser255 by mitogen‐activated protein kinase has previously been implicated in Cx43 internalization. The Cx43S373A mutant is resistant to phosphorylation at both these residues and does not undergo ubiquitination, revealing Ser373 phosphorylation as an upstream gatekeeper of a posttranslational modification cascade necessary for Cx43 internalization. Cx43Ser373 phosphorylation is a potent target for therapeutic interventions to preserve gap junction coupling in the stressed myocardium.   相似文献   

20.
The phosphoserine/threonine binding protein 14‐3‐3 stimulates the catalytic activity of protein kinase C‐ε (PKCε) by engaging two tandem phosphoserine‐containing motifs located between the PKCε regulatory and catalytic domains (V3 region). Interaction between 14‐3‐3 and this region of PKCε is essential for the completion of cytokinesis. Here, we report the crystal structure of 14‐3‐3ζ bound to a synthetic diphosphorylated PKCε V3 region revealing how a consensus 14‐3‐3 site and a divergent 14‐3‐3 site cooperate to bind to 14‐3‐3 and so activate PKCε. Thermodynamic data show a markedly enhanced binding affinity for two‐site phosphopeptides over single‐site 14‐3‐3 binding motifs and identifies Ser 368 as a gatekeeper phosphorylation site in this physiologically relevant 14‐3‐3 ligand. This dual‐site intra‐chain recognition has implications for other 14‐3‐3 targets, which seem to have only a single 14‐3‐3 motif, as other lower affinity and cryptic 14‐3‐3 gatekeeper sites might exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号