首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insect diet of chimpanzees and gorillas living at the northern periphery of the Dja Biosphere Reserve in southeast Cameroon and its nutritional contribution is described. We analyzed fecal samples and recorded additional evidence of insectivory. A detailed prey species list is presented for both apes. We carried out nutritional analyses (macronutrients, macro- and micro-minerals) on 11 important and eight nonimportant, but accessible, ant and termite prey species, and estimated the average nutrient intake/day through insects. Although gorillas ate insects more frequently, the average prey biomass intake/day by chimpanzees was twice that by gorillas. The lack of tool-use by gorillas cannot be the main reason for the small overlap of important prey species. Both apes did not seem to consume ant prey for one or more specific nutrients. Also other factors, such as medicinal use, should be considered. Termites, on the other hand, seemed to be selected for particular nutrients. Gorilla intake of the important termite prey, Cubitermes and Thoracotermes, met with estimated iron requirements. Their potential role as antidiarrheal treatment is as yet unclear. Chimpanzee intake of the important termite prey, Macrotermes spp., met with estimated manganese requirements and the protein intake/day (mean: 2 g/d) reached significant values (>20 g/d). To fully understand the importance of nutritional contributions of insects to ape diets in Cameroon, the chemical composition and nutrient intake of fruit and foliage in their diets should be investigated.  相似文献   

2.
Sympatric populations of lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the Lopé Reserve in central Gabon consumed insects at similar average frequencies over a 7-year period (30% versus 31% feces contained insect remains). Data came mostly from fecal analysis supplemented by observation and trail evidence. The weaver ant (Oecophylla longinoda) was the species eaten most frequently by both gorillas and chimpanzees. Other species of insects wore eaten but there was virtually no overlap: Chimpanzees used tools to eat Apis bees (and their honey) and two large species of ants; gorillas ate three species of small ants. Thus, despite their shared habitat, the esources utilized were not identical as gorillas do not show the tool-use “technology” of chimpanzees. The frequency of insect-eating by both species of ape varied seasonally and between years but in different ways. This variation did not seem to be related to the ratio of fruit to foliage in their diets. Gorillas of all age-classes ate insects at similar rates. Comparisons with insectivory by other populations of gorillas indicate differences exist. Mountain gorillas (Gorilla g. beringei) in the Virunga Volcanoes, Rwanda, consume thousands of invertebrates daily, eating them inadvertently with handfuls of herbaceous foods but they deliberately ingest insect-foods only rarely. Lowland gorillas at Lopé habitually ate social insects, and their selective processing of herbaceous foods probably minimizes inadvertent consumption of other invertebrates. Gorillas at Belinga in northeastern Gabon, 250 km from Lop6, ate social insects at similar rates but ignored weaver ants in favor of Cubitermes sulcifrons, a small species of termite that occurs at Lopé but was not eaten by gorillas. This indicates that local traditions similar to those reported for chimpanzees also exist amongst populations of gorillas. © 1992 Wiley-Liss, Inc.  相似文献   

3.
Insects are a nutritious food source for many primates. In chimpanzees, insectivory is most prevalent among communities that manufacture tools to harvest social insects, particularly ants and termites. In contrast to other long-term study sites, chimpanzees (Pan troglodytes schweinfurthii) in Budongo Forest and Kibale National Park, Uganda, rarely eat insects and have small foraging tool kits, supporting speculation that infrequent insectivory—technically aided or otherwise—characterises chimpanzees in this part of Uganda’s Rift Valley. To expand the dataset for this region, insect foraging was investigated at Bulindi (25 km from Budongo) over 19 months during two studies in 2007–2008 and 2012–2013. Systematic faecal analysis demonstrated that insectivory is a habitual foraging activity at this site. Overall levels of insect consumption varied considerably across months but were not predicted by monthly changes in rainfall or fruit intake. Unlike their Budongo and Kibale counterparts, Bulindi chimpanzees often consume ants (principally weaver ants, Oecophylla longinoda) and use sticks to dig out stingless bee (Meliponini) ground nests. In other respects, however, insectivory at Bulindi conforms to the pattern observed elsewhere in this region: they do not manufacture ‘fishing’ or ‘dipping’ tools to harvest termites and aggressive or hard-to-access ants (e.g., army ants, Dorylus spp.), despite availability of suitable prey. The Bulindi data lend support to the supposition that chimpanzees in this part of the Rift Valley rarely exploit termites and Dorylus ants, apparently lacking the ‘cultural knowledge’ that would enable them to do so most efficiently (i.e., tool use). The study’s findings contribute to current debates about the relative influence of genetics, environment and culture in shaping regional and local variability in Pan foraging ecology.  相似文献   

4.
Little is known about the behavior of chimpanzees living in savanna-woodlands, although they are of particular interest to anthropologists for the insight they can provide regarding the ecological pressures affecting early hominins living in similar habitats. Fongoli, Senegal, is the first site where savanna chimpanzees have been habituated for observational data collection and is the hottest and driest site where such observation of chimpanzees occurs today. Previously, indirect evidence suggested these chimpanzees consumed termites throughout the year, an unusual occurrence for western and eastern chimpanzees. Although meat eating by chimpanzees continues to receive much attention, their use of invertebrate prey has received less emphasis in scenarios of hominin evolution. Here, we further examine the invertebrate diet of Fongoli chimpanzees using direct observational methods and accounting for potential environmental influences. Termite feeding positively correlated with high temperatures. Fongoli chimpanzees spend more time obtaining termites than any other chimpanzee population studied, and this extensive insectivory contributes to the list of distinctive behaviors they display relative to chimpanzees living in more forested habitats. We suggest that savanna chimpanzees at Fongoli differ significantly from chimpanzees elsewhere as a result of the selective pressures characterizing their harsh environment, and this contrast provides an example of a viable referential model for better understanding human evolution. Specifically, our results support the hypotheses that invertebrate prey may have figured more prominently into the diet of early hominins in similar habitats, especially given that invertebrates are an important source of protein and other essential nutrients in a highly seasonal environment.  相似文献   

5.
A specialist predator that has a specialized diet, prey‐specific prey‐capture behaviour and a preference for a particular type of prey may or may not be specialized metabolically. Previous studies have shown that jumping spiders of the genus Portia prey on other spiders using prey‐specific prey‐capture behaviour, prefer spiders as prey to insects and gain long‐term benefits in terms of higher survival and growth rates on spider diets than on insect diets. However, it is unclear whether there are substances uniquely present in spiders on which Portia depends, or, alternatively, spiders and insects all contain more or less the same nutrients but the relative amounts of these substances are such that Portia perform better on a spider diet. These questions are addressed by testing the hypothesis that prey specialization includes metabolic adaptations that allow Portia an enhanced nutrient extraction or nutrient utilization efficiency when feeding on spider prey compared with insect prey. Three groups of Portia quei Zabka are fed either their preferred spider prey or one of two types of flies (Drosophila melanogaster Meigen) that differ in nitrogen and lipid content. Portia quei shows a higher feeding rate of high‐protein flies than of high‐lipid flies and spiders but, after 5 days of feeding, there is no significant difference in growth between treatments, and the diets lead to significant changes in the macronutrient composition of P. quei as a result of variable extraction and utilization of the prey. The short‐term utilization of spider prey is similar to that of high‐lipid flies and both differ in several respects from the utilization of high‐protein flies. Thus, the short‐term nutrient utilization is better explained by prey macronutrient content than by whether the prey is a spider or not. The results suggest that spider prey may have a more optimal macronutrient composition for P. quei and that P. quei does not depend on spider‐specific substances.  相似文献   

6.
Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the determination of depredation rates and the cascading effects of insectivory on crop damage and yield.  相似文献   

7.
I studied insect-foraging strategies of great apes and aimed to define niche differentiation in their insect diet. I investigated seasonality in fruit-, foliage-, insect-, and meat-eating by great apes in southeast Cameroon via indirect methods and measured activity and nest densities of insect prey. I used a multinomial logistic regression to analyze the data. Gorilla and chimpanzee insect-, ant-, and termite-eating does not correlate with rainfall. Ant- and nonwinged termite-eating by chimpanzees increased in periods of succulent fruit scarcity and provided protein and energy, which might have compensated for the protein-low foliage eaten then. The apes ate winged termites when succulent fruit was abundant. Ant and winged termite consumption by gorillas correlates positively with that of chimpanzees. Ant-eating by gorillas increased when fruit was scarce, but was also associated with temporal ant activity and nest density. Both ape species also encountered more ant nests and trails in that period, as they predominantly foraged for herbs in vegetation types with high ant availability. In contrast, fruit-eating correlates positively with nonwinged termite-eating by gorillas, but again temporal prey availability is also associated. Termites might have provided 1) supplemental iron when tannin-rich fruits were eaten or 2) antidiarrheal properties when gorillas ate too much laxative fruit. Termite-eating by both ape species is not associated with spatial termite availability. In conclusion, there is niche differentiation in their insect diet. Based on the trade-off between foraging effort and nutritional gain, chimpanzees use a high-energy and gorillas a low-energy strategy when feeding on termites, but both use a low-energy strategy when feeding on ants. However, more information on the consumption of ant larvae is necessary to define niche differentiation in their ant diet.  相似文献   

8.
Despite the fact that many primates consume vertebrate prey, surprisingly little is known about the nutritional benefits of eating meat for members of this diverse order. Although chimpanzees (Pan troglodytes) primarily eat plant source foods, especially fruit, they consume vertebrate prey with excitement, attesting to its nutritional value. Meat is a concentrated source of macro- and micronutrients; however, a carcass is not a uniform package. For example, the mammalian brain has considerably higher fat content than lean muscle tissue. The brain both has great caloric value and contains high concentrations of long-chain polyunsaturated fatty acids, which are critical for normal brain function. It thus represents a large, nutrient-dense source of energy and essential nutrients that should be highly valued. We filmed consumption of 29 arboreal monkeys by chimpanzees at Gombe National Park, Tanzania, and recorded the order in which general regions of the body were consumed. Overall, the head was significantly more likely to be targeted first than either the torso (including viscera) or appendages. This result was driven by subadult prey, 91% of which were eaten head-first, probably because their skulls were relatively easy for chimpanzees to break with a single bite. Possessors of adult prey (with robust skulls) often first selected the viscera, probably to harvest the fat-rich liver, thus maximizing immediate return in the face of the threat of harassment or theft. This has important implications for our understanding of the nutritional benefits of meat eating among primates, and highlights the need for future studies that measure the nutritional content of specific tissues and examine which are preferentially consumed or shared.  相似文献   

9.
Chimpanzees regularly hunt a variety of prey species. However, they rarely scavenge, which distinguishes chimpanzee carnivory from that of some modern hunter-gatherers and, presumably, at least some Plio-Pleistocene hominins. I use observations made over an 11-year period to document all known opportunities for scavenging encountered by chimpanzees at Ngogo, Kibale National Park, Uganda, and describe all cases of scavenging. I also review data on scavenging from other chimpanzee research sites. Chimpanzees at Ngogo encountered scavenging opportunities only about once per 100 days and ate meat from scavenged carcasses only four times. Scavenging opportunities are also rare at other sites, even where leopards are present (Mahale, Ta?, Gombe), and scavenging of leopard kills is known only from Mahale. Feeding on prey that chimpanzees had hunted but then abandoned is the most common form of scavenging reported across study sites. For example, several individuals at Ngogo ate meat from a partially consumed red colobus carcass abandoned after a hunt the previous day. Such behavior probably was not common among Oldowan hominins. Ngogo data and those from other sites also show that chimpanzees sometimes eat meat from carcasses of prey that they did not see killed and that were not killed by chimpanzees, and that scavenging allows access to carcasses larger than those of any prey items. However, chimpanzees ignore relatively many opportunities to obtain meat from such carcasses. Scavenging may be rare because fresh carcasses are rare, because the risk of bacterial infections and zoonoses is high, and because chimpanzees may not recognize certain species as potential prey or certain size classes of prey species as food sources. Its minimal nutritional importance, along with the absence of technology to facilitate confrontational scavenging and rapid carcass processing, apparently distinguishes chimpanzee foraging strategies from those of at least some Oldowan hominins.  相似文献   

10.
We studied food intake of and estimated ingested energy in female and male Myotis daubentonii during the periods of pregnancy (period 1, 8 May–4 June) and of intense spermatogenetic activity (period 2, 24 July–22 August) over 8 years (1996–2003) in central Germany. We used radiotelemetry to determine the time spent foraging and marked animals with chemiluminescent light-sticks to determine prey attack rates. Body length, body mass, moisture content, and caloric content of chironomids, the main prey of Daubenton’s bats, were measured to estimate the nightly food intake and, in consequence, energy intake. Pregnant females spent significantly more time foraging than males during period 1 and females during the post-lactation period. In contrast, male foraged longer during the period of highest spermatogenetic activity than during late spring and also significantly longer than post-lactating females. Based on a mean number of 8.3 prey attacks per minute, the time spent foraging, and a capture success rate of either 50 or 92%, calculated intake values with a feeding rate of 7.6 insects per minute (=92% capture success) were more consistent with literature data for other insectivorous bats than that of values calculated on the basis of a capture success rate of 50%. In the high capture-success model, calculated insect intake of female bats was 8.0 g during pregnancy and 4.9 g per day during post-lactation, providing 5.0 and 3.0 kJ of ingested energy per gram body mass per day. Calculated intake of male bats was 3.6 g insects per day during late spring and 8.0 g during period of intensive spermatogenesis, providing 2.6 and 5.7 kJ of ingested energy per gram body mass.  相似文献   

11.
Daily energy intake of adult female mammals is influenced by environmental conditions and physiological requirements, including reproduction. We examined the effects of fruit availability on macronutrient and metabolisable energy (ME) intake by adult female chimpanzees (Pan troglodytes schweinfurthii) of the Kanyawara community in Kibale National Park, Uganda, from January 2014 through June 2015. Drupe fruits were abundant for 4 months, whereas the other 14 months were dominated by fig fruits. The mean daily intake of food (dry matter) and ME did not differ between drupe‐months and fig‐months. However, foraging costs were higher during fig‐months, as indicated by a 20% increase in feeding time. Furthermore, during drupe‐months female chimpanzees ingested more water‐soluble carbohydrates and lipids, and less available protein and neutral detergent fibre. Although ME intake did not differ consistently between drupe‐months and fig‐months, they consumed more on days when ripe fruit dominated the diet than when leaves and pithy stems dominated the diet. Our data suggest that differences in diet quality between drupes and figs can have important effects on frugivore foraging and that they influence net energy gain more by their effects on macronutrient composition or foraging cost than by their direct impact on energy intake.  相似文献   

12.
Kent H.  Redford  Jose G.  Dorea 《Journal of Zoology》1984,203(3):385-395
Water, ash, total nitrogen and fat contents were determined for the worker and soldier castes of nine species of central Brazilian termites. These values were then compared with those from other species of termites, ants and 22 other species of terrestrial invertebrates. In comparison with most other invertebrates, termite workers and soldiers tend to be high in ash, low in fat and about equal in water and nitrogen. In contrast, alate ants and termites and most larval or pupal insects have much higher percentages of fat. It is pointed out that most protein and total energy values for arthropods are of limited use because the assays used incorporate the nitrogen present in the indigestible chitin exoskeleton.
It is concluded that most invertebrate-eating mammals choose prey based on availability and other aspects of prey biology and not on gross nutritional factors. The problems associated with eating ants and termites are discussed and include low nutritional value of prey, small prey size and forms of defense relying on the sociality of the prey.  相似文献   

13.
The pronounced carnivory of many human populations contrasts sharply with feeding habits of other Hominoidea. Of extant great apes, only chimpanzees (Pan spp.) actively seek out vertebrate prey, but meat is only a minor portion of their diet. Some accounts suggest that wild chimpanzees digest prey inefficiently. To investigate the capacity of chimpanzees to digest meat, feeding trials were carried out on three captive chimpanzees (Pan troglodytes) using a fixed amount of nonpurified diet with and without a predetermined amount of boned cooked chicken. The results showed no significant differences in the rate of passage of digesta and digestion of diets with and without chicken. Meat ingestion did not change the nitrogen (N) concentration of feces or the total amount of N defecated. Visual inspection of fecal matter showed no evidence of undigested meat. Taken together, the results indicate that chimpanzees are able to digest meat of the type and quantity consumed during these trials.  相似文献   

14.
Weaver ants (Oecophylla spp.) are managed in plantations to control insect pests and are sometimes harvested as a protein‐rich food source. In both cases, the amount of insect prey caught by the ants is imperative for returns, as more prey leads to more effective biocontrol and to a higher production of ants. Malaise‐like traps placed in trees may catch flying insects without catching ants, as ants may use pheromone trails to navigate in and out of the traps. Thus, ants may increase their prey intake if they are able to extract insects caught in traps. In a mango plantation in Tanzania, we estimated the amount of insects caught by simple traps (cost per trap = 3.9 USD), and whether Oecophylla longinoda was able to collect insects from them. On average, a trap caught 110 insects per month without catching any weaver ants. The number of insects found in traps with ant access was 25% lower than in control traps (ants excluded), showing that ants were able to gather prey from the traps. Ant activity in traps increased over time, showing that prey extraction efficiency may increase as ants customize to the traps. The prey removed from traps by ants constituted 5% of the number of prey items collected by O. longinoda under natural conditions (without traps), potentially increasing to 14% if ants learn to extract all insects. Thus, prey intake may be increased with 5–14% per 3.9 USD invested in traps. These numbers increased to 38 and 78%, respectively, when light was used to attract insects during night time. Combining ant predation with insect trapping is a new approach potentially building increased returns to ant biocontrol and to ant entomophagy.  相似文献   

15.
Several populations of chimpanzees have been reported to prey upon Dorylus army ants. The most common tool‐using technique to gather these ants is with “dipping” probes, which vary in length with regard to aggressiveness and lifestyle of the prey species. We report the use of a tool set in army ant predation by chimpanzees in the Goualougo Triangle, Republic of Congo. We recovered 1,060 tools used in this context and collected 25 video recordings of chimpanzee tool‐using behavior at ant nests. Two different types of tools were distinguished based on their form and function. The chimpanzees use a woody sapling to perforate the ant nest, and then a herb stem as a dipping tool to harvest the ants. All of the species of ants preyed upon in Goualougo are present and consumed by chimpanzees at other sites, but there are no other reports of such a regular or widespread use of more than one type of tool to prey upon Dorylus ants. Furthermore, this tool set differs from other types of tool combinations used by chimpanzees at this site for preying upon termites or gathering honey. Therefore, we conclude that these chimpanzees have developed a specialized method for preying upon army ants, which involves the use of an additional tool for opening nests. Further research is needed to determine which specific ecological and social factors may have shaped the emergence and maintenance of this technology. Am. J. Primatol. 72:17–24, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Chimpanzees (Pan troglodytes) are well-known to eat invertebrates, especially social insects, across Africa, but allopatric bonobos (P. paniscus) are not. Bonobo insectivory is sparsely documented and apparently sporadic. However, the availability to bonobos of social insect prey and raw materials with which to make tools to exploit them is unknown. Here, we test a set of hypotheses that relates to questions of presence, abundance, density, and distribution of taxa that Pan consume and of vegetation suitable for making extractive foraging tools. We worked at Lui Kotal, Democratic Republic of Congo, where unprovisioned bonobos live in intact forest, far from villages. We collected insect and fecal specimens, transected for prey and assessed raw materials, and monitored mounds of Macrotermes. All but 1 of the major taxa of relevant termites, ants, and (stinging) honey bees were present. The 3 main taxa of insects that chimpanzees elsewhere eat —Macrotermes (fungus-growing termites), Dorylus (Anomma; army or driver ants), and Apis (honey bees)— were abundant and widespread, and usually at densities exceeding those at well-known chimpanzee study-sites. Similarly, woody and nonwoody vegetation suitable for making fishing probes was common at mounds of Macrotermes. There is no obvious ecological reason why bonobos should not use elementary technology in extractive foraging, e.g., termite-fish, ant-fish, ant-dip, honey-dip, to obtain social insects.  相似文献   

17.
A variety of insects are commonly fed to captive insectivores but detailed nutritional analyses are only available for the most commonly fed species. Soldier fly larvae, Turkestan cockroach nymphs, tebo worms, and adult house flies were analyzed for moisture, protein, fat, ash, acid detergent fiber, neutral detergent fiber, minerals, amino acids, fatty acids, vitamins, and selected carotenoids. The acid detergent fiber was analyzed for amino acids to estimate chitin content. Nutrient content varied widely between the four insect species. Ranges for the macronutrients were as follows: moisture (60.2–74.8%), crude protein (15.5–19.7%), crude fat (1.9%–29.4%), acid detergent fiber (1.4–3.0%), neutral detergent fiber (2.6–3.8%), and ash (0.8–3.5%). Energy content ranged from a low of 918 kcal/kg for house flies to 2,977 kcal/kg for tebo worms. The chitin content of these four species ranged from 6.7 to 21.0 mg/kg. The nutrients most likely to be deficient when these species of insects are used as food for insectivores are vitamin A, vitamin D, calcium, vitamin E, thiamine, iodine, and vitamin B12. The number of nutrients deficient vs. the NRC requirements for rats on an energy basis by insect species was as follows: soldier fly larvae (3), tebo worms (15), Turkestan cockroach nymphs (5), and adult house flies (6). These data are valuable in helping assess the nutrient intake of captive insectivores and in developing gut‐loading diets to improve the nutrient intake of captive insectivores. Zoo Biol. 32:27‐36, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
We investigated milk nutrient composition from three Asian elephant cows over the first 3 years of lactation, including two consecutive lactations in one cow. Body mass gain is presented for three calves during the first year. Milk samples (n = 74) were analyzed for dry matter (DM), fat, crude protein (CP), sugar, ash, calcium (Ca), phosphorus (P), and potassium (K); gross energy (GE) was calculated. Concentrations of most nutrients changed over lactation: DM, fat, CP, Ca, P, and GE were positively correlated to calf age; sugar was negatively correlated to calf age. GE doubled between birth (1 kcal/g) and 2 years of age (2 kcal/g). After accounting for calf age, GE, fat, Ca, and P concentrations differed among the cows. Milk composition also differed between two lactations from the same cow. When milk nutrients were expressed on a mg per kcal basis, the pattern changes: CP, Ca, and P remained relatively constant over lactation on a per energy basis. Calf mass quadrupled over the first year of life; mass gain was linear at 0.9 kg/day. Asian elephant milk composition is variable, both across lactations and between cows, complicating efforts to determine representative values for comparative studies and for the formulation of elephant milk formulas. The fact that CP, Ca, and P were all relatively constant when expressed on a per energy basis may be of biological significance. The increase in nutrient density over lactation undoubtedly limits maternal water loss, reducing the volume of milk necessary to support the calf. Zoo Biol 32:291–298, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Relatively little is known about the nutritional ecology of omnivorous Asiatic black bears (Ursus thibetanus) in Nepal. We characterized the diet of black bears in two seasons (June–July, “summer”; and October–November “autumn”) and two study areas (Dhorpatan Hunting Reserve [DHR]; and Kailash Sacred Landscape [KSL]). We then conducted nutritional analysis of species consumed by black bears in each study area, in combination with nutritional estimates from the literature, to estimate the proportions of macronutrients (i.e., protein [P], lipid [L], and carbohydrate [C]) in the seasonal bear foods and diets, as well as their macronutrient niche breadth. We found that bamboo (Arundinaria spp.) had the highest relative frequency in both study areas and seasons. Ants and termites were found in DHR diets, but not KSL diets. One anthropogenic crop was found in DHR summer diets (Zea mays) and two were found in KSL summer diets (Z. mays; and Kodo millet [Paspalum scrobiculatum]). Other than insects, no animal prey was found in either diet. The proportions of macronutrients in diets (i.e., realized macronutrient niches) were relatively high in carbohydrate for both study areas and seasons: DHRsummer 24.1P:8.7L:67.2C; KSLsummer 16.7P:8.2L:75.1C; DHRautumn 21.1P:10.5L:68.4C; KSHautumn 19.0P:11.0L:70.0C. Macronutrient niche breadth was 3.1 × greater in the DHR than KSL during summer, and 4.0 × greater in the autumn, primarily due to the higher proportion of lipid in ants and termites relative to plant foods. Within‐study area differences in niche breadth were greater during summer than autumn; in the KSH the macronutrient breadth was 1.4 × greater in summer, while in the DHR it was 1.1 × greater in summer. Similarity in dietary macronutrient proportions despite differences in foods consumed and niche breadth are suggestive of foraging to reach a preferred macronutrient balance.  相似文献   

20.
Little is known about the milk composition of nonhuman primates, and it has never been examined in capuchin monkeys (genus Cebus). This article reports on the macronutrient milk composition (fat, crude protein (CP), lactose, dry matter (DM), and total gross energy (GE)) of captive housed tufted capuchins (Cebus apella) (n=8). C. apella milk averaged 5.22% fat, 2.40% CP, 6.94% lactose, 16.48% DM, and 0.89 kcal/g. Fat was the most variable macronutrient and was significantly higher in samples collected after 2 months of lactation. To explore the adaptive significance of C. apella milk composition, results were compared with data on milk composition from a closely related cebid, Saimiri boliviensis boliviensis, and another large‐brained anthropoid, Homo sapiens. C. apella milk was only significantly different from Saimiri milk in CP and the proportion of energy from CP. Compared with human milk, C. apella milk was lower in lactose but higher in fat, CP, DM, GE, and the proportion of energy from CP. Results from this small dataset suggest that among anthropoid primates, the macronutrient composition of milk is influenced by phylogeny, may vary relative to infant growth rates, but may not be related in any direct way to relative brain size. Am. J. Primatol. 72:81–86, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号