首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
The study on Stevia callus has the potential to advance the knowledge of antioxidant mechanisms involved in unorganized cells response to drought stress. The effects of polyethylene glycol (PEG; 0 and 4% w/v) in combination with paclobutrazol (PBZ; 0 and 2 mg l?1) and gibberellin (GA; 0 and 2 mg l?1) were studied on Stevia rebaudiana callus. PEG treatment led to an oxidative stress, as indicated by increased H2O2 content whose accumulation was prevented with PBZ and GA treatments. All treatments of PEG, PBZ and GA increased the total antioxidant capacity, with the highest antioxidant power in PBZ and GA treatments without PEG. The activity of superoxide dismutase, catalase and ascorbate peroxidase significantly increased in PEG treatment alone or in combination with PBZ and GA. All treatments of PEG, PBZ and GA significantly increased proteins, amino acids and proline contents, with the highest increase in presence of PBZ in medium culture. In contrary to proline, the activity of pyrroline-5-carboxylate synthetase and proline dehydrogenase did not change in response to any of the treatments. Collectively, our results demonstrated that PBZ and GA increased reactive oxygen species scavenging and osmolytes in PEG-treated calli more than PEG treatment alone to alleviate negative effects of PEG on Stevia calli. These findings will enable us to design effective genetic engineering strategies in callus culture to generate some somaclonal variation that may be useful in enhancing drought resistance in Stevia.  相似文献   

2.
3.
Drought stress is one of the major environmental stresses that limit crop production in arid regions. A greenhouse culture experiment was conducted to evaluate the response of an agronomically and economically important sweet medical herb (Stevia rebaudiana) to polyethylene glycol (PEG 6000)-induced drought stress (5, 10, and 15% (w/v) PEG, equivalent to leaf water potentials of ??0.49, ??1.40 and ??2.93 MPa, respectively) for 1 month. Plant mass, a major determinant of Stevia yield, showed a reduction after PEG treatments. PEG-reduced photosynthesis traits included the maximal quantum yield of photosystem II (Fv/Fm), efficiency of photosystems I and II (PIabs), intercellular CO2, net photosynthesis, chlorophylls, carotenoids and water use efficiency, followed by the reduction of carbohydrates. Under PEG treatment, the reactive oxygen species (ROS) accumulation occurred and plants exhibited an increase in H2O2 generation. Consequently, an increase in malondialdehyde and electrolyte leakage was evident in PEG treatment, indicating membrane lipid peroxidation. In PEG-treated plants, the ROS accumulation was accompanied by an increase in activity of some enzymatic and non-enzymatic antioxidants. Leaf extracts of PEG-treated plants showed lower superoxide anion, hydroxyl and nitric oxide radical scavenging activity than control plants. Drought stress also caused the accumulation of the compatible solutes proline and glycine betaine. Collectively, the results demonstrated that PEG-induced oxidative stress, due to insufficient antioxidant mechanisms, provoked damages to cell membrane and photosynthetic apparatus, with consequently reduced carbohydrates and plant growth. These results are of basic importance as vegetative growth is the major determining criterion for Stevia crops and adequate irrigation is crucial for obtaining higher yield.  相似文献   

4.
The effect of supplementation of reduced glutathione (GSH) to cryoprotectant solution on the generation of reactive oxygen species (ROS) (e.g., H2O2, OH·, and O 2 ·? ) and antioxidants (e.g., SOD, POD, CAT, AsA, and GSH), as well as membrane lipid peroxidation (i.e., MDA content) mitigation in cryopreserving of embryogenic calli (EC) of Agapanthus praecox subsp. orientalis was investigated. The vitrification-based cryopreservation method was used in this study. The addition of GSH at a final concentration of 0.08 mM to the cryoprotectant solution has significantly improved cryotolerance of A. praecox EC. The EC post-thaw survival rate increased by 68.34 % using the cryoprotectant solution containing 0.08 mM GSH as compared to the control (GSH-free). EC treated with GSH displayed the reduction in  OH· generation activity and the contents of H2O2 and MDA, as well as enhancement in the inhibition of O 2 ·? generation and the antioxidant activity. Treatment with exogenous GSH also increased endogenous AsA and GSH contents after dehydration step. Expression of stress-responsive genes, e.g., peroxidase (POD), peroxiredoxin, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and glutathione peroxidase (GPX), was also increased during cryopreservation processes. The expression of DAD1 (Defender against apoptotic cell death) was elevated, while cell death-related protease SBT was suppressed. These results demonstrated that the addition of GSH to cryoprotectant solution affects the ROS level and could effectively improve survival of A. praecox EC through enhancing antioxidant enzyme activities and decreasing cell death.  相似文献   

5.
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75–2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.  相似文献   

6.
Plantago ovata Forsk is an annual herb with immense medicinal importance, the seed and husk of which is used in the treatment of chronic constipation, irritable bowel syndrome, diarrhea since ancient times. Zinc, an essential metal, is required by plants as they form important components of zinc finger proteins and also aid in synthesis of photosynthetic pigments such as chlorophyll. However, in excess amount Zn causes chlorosis of leaf and shoot tissues and generate reactive oxygen species. The present study is aimed at investigating the changes in expression levels of MT2 gene in Plantago ovata under zinc stress. Data show up to 1.66 fold increase in expression of PoMT2 in 1000 µM ZnSO4·7H2O treated sample. Our study also describes alteration of MT2 gene expressions in Plantago ovata as observed through Real time PCR (qPCR) done by \(2^{{ - \Delta \Delta}} C_T\) method. In this study we have observed an upregulation (or induction) in the PoMT2 gene expression level in 500 and 800 µM ZnSO4·7H2O treated samples but found saturation on further increasing the dose to 1000 µM of ZnSO4·7H2O. Determination of the phenotypic and biochemical changes in Plantago ovata due to exposure to zinc stress of concentrations 500, 800 and 1000 µM revealed oxidative stress. The enhanced expression of MT2 gene in Plantago ovata has a correlation with the increased total antioxidant activity and increased DPPH radical scavenging activity.  相似文献   

7.
8.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

9.
10.
Sublethal concentrations of chemical insecticides may cause changes in some behavioral characteristics of natural enemies such as functional responses. The residual effect of three synthetic insecticides including deltamethrin, fenvalerate and azadirachtin were studied on functional response of Habrobracon hebetor Say to Ephestia kuehniella Zeller larvae. Seven host densities (2, 4, 8, 16, 32, 64 and 96) were used during a 24 h period. The resulting data were appropriately fit to Type II functional response models in all treatments: (1) control (0.0916 h?1; and T h  = 0.2011 h); (2) deltamethrin (a = 0.0839 h?1; and T h  = 0.3560 h); (3) fenvalerate (a = 0.0808 h?1 and T h  = 0.3623 h); and (4) azadirachtin (a = 0.0900 h?1 and T h  = 0.2042 h). Maximum theoretical parasitism rate (T/T h ) was 119.34 estimated for control wasps. There was no significant difference between the values of attack rates (a and a + D a ) in all treatments while the handling time was statistically affected in female wasps treated with fenvalerate. Our findings will be useful in safe application of these insecticides in pest management programmes.  相似文献   

11.
Stress-induced methylglyoxal (MG) functions as a toxic molecule, inhibiting plant physiological processes such as photosynthesis and antioxidant defense systems. In the present study, an attempt was made to investigate the MG detoxification through glutathione metabolism in indica rice [Oryza sativa L. ssp. indica cv. Pathumthani 1] under salt stress by exogenous foliar application of paclobutrazol (PBZ). Fourteen-day-old rice seedlings were pretreated with 15 mg L?1 PBZ foliar spray. After 7 days, rice seedlings were subsequently exposed to 0 (control) or 150 mM NaCl (salt stress) for 12 days. Prolonged salt stress enhanced the production of MG molecules and the oxidation of proteins, leading to decreased activity of glyoxalase enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II). Consequently, the decreased glyoxalase activities were also associated with a decline in reduced glutathione (GSH) content and glutathione reductase (GR) activity. PBZ pretreatment of rice seedlings under salt stress significantly lowered MG production and protein oxidation, and increased the activities of both Gly I and Gly II. PBZ also increased GSH content and GR activity along with the up-regulation of glyoxalase enzymes, under salt stress. In summary, salinity induced a high level of MG and the associated oxidative damage, while PBZ application reduced the MG toxicity by up-regulating glyoxalase and glutathione defense system in rice seedlings.  相似文献   

12.
Medicago sativa L. cv. Longzhong is a nutritious forage plant in dryland regions of the Loess Plateau with strong drought tolerance and broad adaptability. To understand the adaptation mechanism of alfalfa (M. sativa L. cv. Longzhong) to drought stress, growth, and physiological parameters including levels of chlorophyll content, osmotic adjustment, reactive oxygen species (ROS), and antioxidant enzymes and antioxidants were measured under simulated levels of drought (? 0.40, ? 0.80, ? 1.20, ? 1.60, and ? 2.00 MPa). The changes in M. sativa L. cv. Longzhong were compared with those of plants of M. sativa L. cv. Longdong control (Variety I) suited to moderate rainfall areas and M. sativa L. cv. Gannong No. 3 (Variety II) suited to irrigated areas. The results showed that root–shoot ratio, the chlorophyll (a + b) and osmolytes contents, the degree of lipid peroxidation and ROS production, and the levels of antioxidative enzymes and antioxidants increased significantly with increasing drought stress, whereas plant height, aboveground biomass, chlorophyll a/b ratio, leaf water potential (Ψ1), and relative water content (RWC) decreased in response to drought. The Longzhong variety responded early to beginning drought stress (between 0 and ? 0.4 MPa) compared with the controls. Under drought stress (between ? 0.4 and ? 2.0 MPa), the Longzhong variety had significantly higher belowground biomass, root–shoot ratio, Ψ1, RWC, catalase (CAT) activity and reduced glutathione content than those of Varieties I and II, but hydrogen peroxide and hydroxyl free radical (OH·) contents were significantly lower. Step regression analysis showed that OH·, CAT, malondialdehyde, superoxide anion-free radical (O 2 ·? ), and superoxide dismutase of Longzhong had the most marked response to drought stress. In conclusion, the stronger drought tolerance of the Longzhong variety might be due to its higher water-holding capacity, root–shoot ratio, and ability to coordinate enzymatic and non-enzymatic antioxidant systems, which coordinate the peroxidation and oxidative systems.  相似文献   

13.
Although salt stress mainly disturbs plant root growth by affecting the biosynthesis and signaling of phytohormones, such as gibberellin (GA) and auxin, the exact mechanisms of the crosstalk between these two hormones remain to be clarified. Indole-3-acetic acid (IAA) is a biologically active auxin molecule. In this study, we investigated the role of Arabidopsis GA20-oxidase 2 (GA20ox2), a final rate-limiting enzyme of active GA biosynthesis, in IAA-directed root growth under NaCl stress. Under the NaCl treatment, seedlings of a loss-of-function ga20ox2-1 mutant exhibited primary root and root hair elongation, altered GA4 accumulation, and decreased root Na+ contents compared with the wild-type, transgenic GA20ox2-complementing, and GA20ox2-overexpression plant lines. Concurrently, ga20ox2-1 alleviated the tissue-specific inhibition of NaCl on IAA generation by YUCCAs, IAA transport by PIN1 and PIN2, and IAA accumulation in roots, thereby explaining how NaCl increased GA20ox2 expression in shoots but disrupted primary root and root hair growth in wild-type seedlings. In addition, a loss-of-function pin2 mutant impeded GA20ox2 expression, indicating that GA20ox2 function requires PIN2 activity. Thus, the activation of GA20ox2 retards IAA-directed primary root and root hair growth in response to NaCl stress.  相似文献   

14.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

15.
Myzus persicae (Sulzer) is a polyphagous aphid that causes chlorosis, necrosis, stunting, and reduce growth rate of the host plants. In this research, the effects of Zinc sulfate and vermicompost (30%), Bacillus subtilis, Pseudomonas fluorescens, Glomus intraradices, G. intraradices × B. subtilis, and G. intraradices × P. fluorescens compared to control was investigated on the growth characters of Capsicum annuum L. and biological parameters of M. persicae. Different fertilizers caused a significant effect on growth characters of C. annuum and biological parameters of M. persicae. The highest plant growth was observed on Zinc sulfate and B. subtilis treated plants, and the lowest was on control. Increase in the amount of specific leaf area (SLA) (0.502 mm2 mg?1) was significantly higher in the B. subtilis than other fertilizer treatments. The longest (10.3 days) and the shortest (5.3 days) developmental times of M. persicae nymphs were observed on 30% vermicompost and Zinc sulfate treatments, respectively. The lowest adult longevity periods of M. persicae (11.2 and 11.3 days) were observed on G. intraradices × B. subtilis and 30% vermicompost treatments, respectively, and the longest ones (16.4 days) on Zinc sulfate. The highest rate of nymphal mortality and the lowest amount of nymphal growth index (NGI) were recorded on 30% vermicompost. The nymphs reared on Zinc sulfate treatment had the lowest rate of nymphal mortality and the highest amount of NGI. Thus, amending the soil with 30% vermicompost had a significantly negative effect on the biological parameters of M. persicae that can be used as an ecological control tactic for this pest.  相似文献   

16.
The effects of plant growth regulators (PGRs) and organic elicitors (OEs) on in vitro propagation of Eucomis autumnalis was established. Three-year-old ex vitro grown plants from organogenesis of E. autumnalis and somatic embryogenesis (previously reported protocol) of Drimia robusta were investigated for antibacterial activity. In vitro propagation from leaf explants of E. autumnalis was established using different PGRs and OE treatments for mass propagation, biomass production and bioactivity analysis to supplement the use of wild plant material. Prolific shoots (16.0?±?0.94 shoots per explant) were obtained with MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium containing 100 mg l?1 haemoglobin (HB), 10 µM benzyladenine (BA) and 2 µM naphthaleneacetic acid (NAA). The shoots were rooted effectively with a combination of 2.5 µM indole-3-acetic acid and 5.0 µM indole-3-butyric acid. The plantlets were successfully acclimatized in a vermiculite-soil mixture (1:1 v/v) in the greenhouse. Three-year-old ex vitro-grown E. autumnalis and D. robusta plants derived via organogenesis and somatic embryogenesis respectively exhibited antibacterial activity and varied with PGR and OE treatments, plant parts and bacteria. The leaves of E. autumnalis ex vitro-derived from a combination of HB, BA and NAA followed by the individual treatments of BA and HB gave the best antibacterial activities (<?1 mg ml?1: minimum inhibitory concentration from 0.098 to 0.78 mg ml?1) against all tested pathogenic bacteria (Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). The bulbs of D. robusta ex vitro-derived from solid culture with 10 µM picloram, 1 µM thidiazuron and 20 µM glutamine exhibited good antibacterial activity against E. faecalis, M. luteus and S. aureus when compared with other treatments and mother plants. The ex vitro-grown E. autumnalis and D. robusta biomass produced with PGRs along with OE treatments confirmed a good potent bioresource and can be used as antibacterial agents. The in vitro plant regeneration of E. autumnalis and D. robusta protocols and ex vitro plants could be used for conservation strategies, bioactivity and traditional medicinal use.  相似文献   

17.
Rosa damascena Mill. is cultivated for its high-value essential oil in different parts of the world. The flower yield and the composition of essential oil of R. damascena are strongly affected by a number of factors. Nevertheless, the interactive effects of foliar application of plant nutrients and kinetin and its time of application on yield and secondary metabolites profile of R. damascena under acidic conditions are still unclear. Thus, a field experiment comprising two different times of spray and five foliar spray treatments was conducted to test the hypothesis that flowering behavior and secondary metabolites profile can be modified through proper nutrient supply at right time. The foliar spray at flower bud appearance stage (S2) significantly (P ≤ 0.05) increased flower yield by about 10.0 % compared with the foliar application at axillary bud development stage (S1) during both years, regardless of plant nutrients. Among the foliar spray treatments, kinetin at 0.20 g L?1 registered about 23–39 % higher flower yield compared with the water spray control; however, remained statistically at par (P ≤ 0.05) with Ca(NO3)2 at 4.06 g L?1. Moreover, the percentage of major fragrance-bearing compounds of essential oil (β-citronellol + nerol, linalool, E-geraniol, and Z-citral) was marginally increased with Ca(NO3)2 compared with kinetin treatment. However, the percentages of major hydrocarbons, nonadecane and heneicosane, were noticeably increased when kinetin was applied at S1. Foliar application of kinetin and Ca(NO3)2 might be done to improve flower yield and essential oil content in R. damascena flowers.  相似文献   

18.
Garden thyme (Thymus vulgaris L., Lamiaceae) is an important aromatic herb used for its medicinal values including antioxidant and antimicrobial properties. The present study was performed to analyze the changes in natural antioxidants after inoculation of in vitro propagated garden thyme plants with arbuscular mycorrhizal fungi (AMF). An efficient and low-cost protocol for large-scale multiplication of this aromatic plant was developed. The explants were cultured on full and half strength Murashige and Skoog (MS) medium containing indole-3-butyric acid (IBA). The maximum number of shoots and roots was obtained on ½ MS medium supplemented with 0.1 mg L?1 IBA after 4 weeks of culture. The successfully adapted in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). Plants were then transferred into field conditions. Mycorrhizal fungi enhanced the activity of some soil enzymes, acid and alkaline phosphatase, urease as well as the levels of extractable glomalin-related proteins in plant rhizosphere. Arbuscular mycorrhizal associations with higher plants promote the accumulation of antioxidant metabolites such as phenols and flavonoids and increase the activity of antioxidant enzymes. The results from the present study suggest enhanced antioxidant capacity of the inoculated T. vulgaris plants which was due mainly to increased accumulation of phenolic compounds (total phenols and flavonoids) together with stimulation of the activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPO).  相似文献   

19.
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2–51.9) when compared to supernatants from non-HS cultures (D 50 7.4–21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7–7.1), a subsequent increase was detected in most cases (D 50 18–97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.  相似文献   

20.
Eclipta alba L. is a well known medicinal herb, found commonly on contaminated roadsides in Kerala, India. To assess its potential for copper tolerance and accumulation, pot culture experiment was carried out. Metal accumulation in the plant in relation to 50–800 mg kg?1 Cu in soils, administered as CuSO4·7H2O in solution, was examined. Biomass yield of shoot and root, pigment content, Cu accumulation in the plant, bio-concentration factor, and translocation factor were the parameters studied. At the highest level of treatment, Cu was found accumulated more in the roots than in shoots. A significant increase in lipid peroxidation, proline content, phenolics and flavanoids were observed in Cu treated plants, compared to the control. The activity of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase was found significantly changed in all the treated plants than in the control. The Bradford assay revealed a significant increase in protein content of the plant at higher levels of Cu treatment. Transmission electron microscopy, images supported the uptake and sequestration of metal particles inside the plant cell. The overall data suggests Eclipta alba L. to be a plant with high potential to tolerate Cu toxicity in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号