首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therapeutic role of sirtuins in neurodegenerative disease   总被引:1,自引:0,他引:1  
The sirtuins are a family of enzymes which control diverse and vital cellular functions, including metabolism and aging. Manipulations of sirtuin activities cause activation of anti-apoptotic, anti-inflammatory, anti-stress responses, and the modulation of an aggregation of proteins involved in neurodegenerative disorders. Recently, sirtuins were found to be disease-modifiers in various models of neurodegeneration. However, almost in all instances, the exact mechanisms of neuroprotection remain elusive. Nevertheless, the manipulation of sirtuin activities is appealing as a novel therapeutic strategy for the treatment of currently fatal human disorders such as Alzheimer's and Parkinson's diseases. Here, we review current data which support the putative therapeutic roles of sirtuin in aging and in neurodegenerative diseases and the feasibility of the development of sirtuin-based therapies.  相似文献   

2.
Drosophila has provided a powerful genetic system in which to elucidate fundamental cellular pathways in the context of a developing and functioning nervous system. Recently, Drosophila has been applied toward elucidating mechanisms of human neurodegenerative disease, including Alzheimer's, Parkinson's and Huntington's diseases. Drosophila allows study of the normal function of disease proteins, as well as study of effects of familial mutations upon targeted expression of human mutant forms in the fly. These studies have revealed new insight into the normal functions of such disease proteins, as well as provided models in Drosophila that will allow genetic approaches to be applied toward elucidating ways to prevent or delay toxic effects of such disease proteins. These, and studies to come that follow from the recently completed sequence of the Drosophila genome, underscore the contributions that Drosophila as a model genetic system stands to contribute toward the understanding of human neurodegenerative disease.  相似文献   

3.
4.
In this work we tested viability, proliferation, and vulnerability of neural cells, after continuous radiofrequency (RF) electromagnetic fields exposure (global system for mobile telecommunications (GSM) modulated 900 MHz signal at a specific absorption rate (SAR) of 1 W/kg and maximum duration 144 h) generated by transverse electromagnetic cells. We used two cellular systems, SN56 cholinergic for example, SN56 cholinergic cell line and rat primary cortical neurons, and well‐known neurotoxic challenges, such as glutamate, 25‐35AA beta‐amyloid, and hydrogen peroxide. Exposure to RF did not change viability/proliferation rate of the SN56 cholinergic cells or viability of cortical neurons. Co‐exposure to RF exacerbated neurotoxic effect of hydrogen peroxide in SN56, but not in primary cortical neurons, whereas no cooperative effects of RF with glutamate and 25‐35AA beta‐amyloid were found. These data suggest that only under particular circumstances exposure to GSM modulated, 900 MHz signal act as a co‐stressor for oxidative damage of neural cells. Bioelectromagnetics 30:564–572, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
《Developmental cell》2022,57(6):783-798.e8
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

6.
The twenty-first century arrived in the middle of a global epidemic of metabolic syndrome (MS) and type 2 diabetes mellitus (DM2). It is generally accepted that an excess of nutrients linked to a low physical activity triggers the problem. However, the molecular features that interact to develop the MS are not clear. In an effort to understand and control them, they have been extensively studied, but this goal has not been achieved yet. Nonhuman animal models have been used to explore diet and genetic factors in which experimental conditions are controlled. For example, only one factor in the diet, such as fats or carbohydrates can be modified to better understand a single change that would be impossible in humans. Most of the studies have been done in rodents. However, it is difficult to directly compare them, because experiments are different in more than one variable; genetic strains, amount, and the type of fat used in the diet and sex. Thus, the only possible criteria of comparison are the relevance of the observed changes. We review different animal models and add some original observations on short-term changes in metabolism and beta cells in our own model of adult Wistar rats that are not especially prone to get fat or develop DM2, treated with 20% sucrose in drinking water. One early change observed in pancreatic beta cells is the increase in GLUT2 expression that is located to the membrane of the cells. This change could partially explain the presence of insulin hypersecretion and hyperinsulinemia in these rats. Understanding early changes that lead to MS and in time to pancreatic islet exhaustion is an important biomedical problem that may contribute to learn how to prevent or even reverse MS, before developing DM2.  相似文献   

7.

Background

Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein.

Methodology/Principal Findings

We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed.

Conclusions/Significance

Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases.  相似文献   

8.
Numerous evidences indicate that the phenotype of a neurodegenerative disease and its pathogenetic mechanism are only loosely linked. The phenotype is directly related to the topography of the lesions and is reproduced whatever the mechanism as soon as the same neurons are destroyed or deficient: the symptoms of Parkinson disease are mimicked by any destruction of the neurons of the substantia nigra, caused for instance by the toxin MPTP. This does not mean that idiopathic Parkinson disease is due to MPTP. In the same way, mouse lines such as Reeler, Weaver and Staggerer in which ataxia occurs spontaneously does not help to understand human ataxias: now that mutations responsible for these phenotypes have been identified, it appears that one is responsible for lissencephaly (mutation of the reelin gene) and the other two have no equivalent in man. Therapeutic attempts, however, rely on the understanding of the pathogenetic mechanisms. Introducing a mutated human transgene in the genome of an animal has, in many instances, significantly improved this understanding. Transgenic mice have proven useful in reproducing lesions seen in neurodegenerative disease such as the plaques of Alzheimer disease (in the APP mouse which has integrated the mutated gene of the amyloid protein precursor), the tau glial and neuronal accumulation (seen in cases of frontotemporal dementias due to tau mutation), the nuclear inclusions caused by CAG triplet expansion (seen in the mutation of Huntington disease and autosomal dominant spinocerebellar ataxias). These recent advances have fostered numerous therapeutic attempts. Transgenesis in drosophila and in the worm Caenorhabditis elegans have opened new possibilities in the screening of protein partners, modifier genes, and potential therapeutic molecules. However, it is also becoming clear that introducing a human mutated gene in an animal does not necessarily trigger pathogenetic cascades identical to those seen in the human disease. Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.  相似文献   

9.
10.
11.
Mammalian Genome - Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are...  相似文献   

12.
13.
Respiratory diseases are the major cause of human illness and death around the world. Despite advances in detection and treatment, very few classes of safe and effective therapy have been introduced to date. At present, phytochemicals are getting more attention because of their diverse beneficial activities and minimal toxicity. Tannins are polyphenolic secondary metabolites with high molecular weights, which are naturally present in a wide variety of fruits, vegetables, cereals, and leguminous seeds. Many tannins are endowed with well-recognized protective properties, such as anti-cancer, anti-microbial, anti-oxidant, anti-hyperglycemic, and many others. This review summarizes a large body of experimental evidence implicating that tannins are helpful in tackling a wide range of non-malignant respiratory diseases including acute lung injury (ALI), pulmonary fibrosis, asthma, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Mechanistic pathways by which various classes of tannins execute their beneficial effects are discussed. In addition, clinical trials and our perspective on future research with tannins are also reviewed.  相似文献   

14.
Berberine(BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR's effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer's disease(AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson's disease(PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.  相似文献   

15.
Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not account for the improvement. NSCs also increased brain beta-hexosaminidase levels, reduced ganglioside storage and diminished activated microgliosis. Additionally, when oral glycosphingolipid biosynthesis inhibitors (beta-hexosaminidase substrate inhibitors) were combined with NSC transplantation, substantial synergy resulted. Efficacy extended to human NSCs, both to those isolated directly from the central nervous system (CNS) and to those derived secondarily from embryonic stem cells. Appreciating that NSCs exhibit a broad repertoire of potentially therapeutic actions, of which neuronal replacement is but one, may help in formulating rational multimodal strategies for the treatment of neurodegenerative diseases.  相似文献   

16.
Nonalcoholic fatty liver disease and the metabolic syndrome   总被引:16,自引:0,他引:16  
PURPOSE OF REVIEW: Clinical, epidemiological and biochemical data strongly support the concept that nonalcoholic fatty liver disease is the hepatic manifestation of the metabolic syndrome. Insulin resistance is the common factor connecting obesity, diabetes, hypertension and dyslipidemia with fatty liver and the progression of hepatic disease to steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. RECENT FINDINGS: The association of nonalcoholic fatty liver disease with the features of the metabolic syndrome has been confirmed in several epidemiological studies. The diagnostic and clinical significance of raised liver enzymes has been questioned; advanced hepatic disease may also be present in individuals with ultrasonographically detected steatosis and normal aminotransferase levels. The role of adipokines (leptin, adiponectin) and cytokines (tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta) in disease progression is probably pivotal, mediated by oxidative stress. The importance of iron accumulation in this process has not been confirmed. Treatments aimed at weight loss remain a primary option; among pharmacological interventions, insulin sensitizers (glitazones and metformin) have confirmed beneficial effects on both biochemical and histological data, but new treatments are on the horizon. SUMMARY: Nonalcoholic fatty liver disease prevalence in Western countries is high and there is a trend towards a further increase, with millions of people at risk of advanced liver disease. The epidemiological evidence, the lifestyle origin of the disease and the cost of pharmacotherapy make prevention a primary goal, and will contribute to making behavior therapy the background treatment. We need specific programs and carefully controlled, randomized studies to tackle simultaneously all the components of the metabolic syndrome.  相似文献   

17.
18.
19.
Axonal transport and neurodegenerative disease   总被引:1,自引:0,他引:1  
Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function and survival. Thus, neurons are uniquely dependent on microtubule based transport. Growing evidence supports the idea that deficits in axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. We describe the motor, cytoskeletal, and adaptor proteins involved in axonal transport and their interactions. Data linking disruption of axonal transport to diseases such as ALS are discussed. Finally, we explore the pathways that may cause neuronal dysfunction and death.  相似文献   

20.
Redox metals and neurodegenerative disease   总被引:6,自引:0,他引:6  
Multiple lines of evidence implicate redox-active transition metals as mediators of oxidative stress in neurodegenerative diseases. Among the recent research discoveries is the finding that transition metals bind to proteins associated with neurodegeneration, including the prion protein. Whereas binding in the latter case may serve an antioxidant function, adventitious binding of metals to other proteins appears to preserve their catalytic redox activity in a manner that disturbs free radical homeostasis. Alterations in the levels of copper- and iron-containing metalloenzymes, involved in processing partially reduced oxygen species, are also likely to contribute to altered redox balance in neurodegenerative diseases. Nonetheless, even in familial forms of amyotrophic lateral sclerosis linked to mutations in superoxide dismutase, it is unclear whether an altered enzyme activity or, indirectly, a disturbance in transition-metal homeostasis is involved in the disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号