首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer stem cells (CSCs) are linked to metastasis. Moreover, a discrete group of miRNAs (metastamiRs) has been shown to promote metastasis. Accordingly, we propose that miRNAs that function as metastatic promoters may influence the CSC phenotype. To study this issue, we compared the expression of 353 miRNAs in CSCs enriched from breast cancer cell lines using qRT–PCR analysis. One of the most altered miRNAs was miR‐10b, which is a reported promoter of metastasis and migration. Stable overexpression of miR‐10b in MCF‐7 cells (miR‐10b‐OE cells) promoted higher self‐renewal and expression of stemness and epithelial–mesenchymal transition (EMT) markers. In agreement with these results, inhibiting miR‐10b expression using synthetic antisense RNAs resulted in a decrease in CSCs self‐renewal. Bioinformatics analyses identified several potential miR‐10b mRNA targets, including phosphatase and tensin homolog (PTEN), a key regulator of the PI3K/AKT pathway involved in metastasis, cell survival, and self‐renewal. The targeting of PTEN by miR‐10b was confirmed using a luciferase reporter, qRT–PCR, and Western blot analyses. Lower PTEN levels were observed in CSCs, and miR‐10b depletion not only increased PTEN mRNA and protein expression but also decreased the activity of AKT, a downstream PTEN target kinase. Correspondingly, PTEN knockdown increased stem cell markers, whereas AKT inhibitors compromised the self‐renewal ability of CSCs and breast cancer cell lines overexpressing miR‐10b. In conclusion, miR‐10b regulates the self‐renewal of the breast CSC phenotype by inhibiting PTEN and maintaining AKT pathway activation.  相似文献   

3.
4.
5.
Increasing evidence has suggested cancer stem cells (CSCs) are considered to be responsible for cancer formation, recurrence, and metastasis. Recently, many studies have also revealed that microRNAs (miRNAs) strongly implicate in regulating self renewal and tumorigenicity of CSCs in human cancers. However, with respect to colon cancer, the role of miRNAs in stemness maintenance and tumorigenicity of CSCs still remains to be unknown. In the present study, we isolated a population of colon CSCs expressing a CD133 surface phenotype from human HT29 colonic adenocarcinoma cell line by Flow Cytometry Cell Sorting. The CD133+ cells possess a greater tumor sphere-forming efficiency in vitro and higher tumorigenic potential in vivo. Furthermore, the CD133+ cells are endowed with stem/progenitor cells-like property including expression of “stemness” genes involved in Wnt2, BMI1, Oct3/4, Notch1, C-myc and other genes as well as self-renewal and differentiation capacity. Moreover, we investigated the miRNA expression profile of colon CSCs using miRNA array. Consequently, we identified a colon CSCs miRNA signature comprising 11 overexpressed and 8 underexpressed miRNAs, such as miR-429, miR-155, and miR-320d, some of which may be involved in regulation of stem cell differentiation. Our results suggest that miRNAs might play important roles in stemness maintenance of colon CSCs, and analysis of specific miRNA expression signatures may contribute to potential cancer therapy.  相似文献   

6.
There are emerging data to suggest that microRNAs (miRNAs) have significant roles in regulating the function of normal cells and cancer stem cells (CSCs). This review aims to analyse the roles of miRNAs in the regulation of colon CSCs through their interaction with various signalling pathways. Studies showed a large number of miRNAs that are reported to be deregulated in colon CSCs. However, few of the studies available were able to outline the function of miRNAs in colon CSCs and uncover their signalling pathways. From those miRNAs, which are better described, miR‐21 followed by miR‐34, miR‐200 and miR‐215 are the most reported miRNAs to have roles in colon CSC regulation. In particular, miRNAs have been reported to regulate the stemness features of colon CSCs mainly via Wnt/B‐catenin and Notch signalling pathways. Additionally, miRNAs have been reported to act on processes involving CSCs through cell cycle regulation genes and epithelial–mesenchymal transition. The relative paucity of data available on the significance of miRNAs in CSCs means that new studies will be of great importance to determine their roles and to identify the signalling pathways through which they operate. Such studies may in future guide further research to target these genes for more effective cancer treatment. miRNAs were shown to regulate the function of cancer stem cells in large bowel cancer by targeting a few key signalling pathways in cells.  相似文献   

7.
8.
The aim of the study was to research the biological functions of circRNA (hsa_circ_0079662) and its underlying mechanism in colorectal cancer. Drug‐resistant cell lines (HT29‐LOHP, HCT116‐LOHP, HCT8‐LOHP) were separately dealt with oxaliplatin concentration gradient (0.1‐10 μmol/L). Real‐time PCR, Western blotting, dual‐luciferase assay, miRNA pull‐down assay, coimmunoprecipitation and ELASA were performed to explore the mechanism of chemotherapy drug oxaliplatin resistance in CRC. The results showed that the expression of hsa_circ_0079662 was increased in drug‐resistant cell lines by RT‐PCR. The expression of HOXA9, TRIP6, Vcam‐1, VEGFC, MMP3, MMP9 and MMP14 was higher by Western blotting. Interaction between HOXA9 and TRIP6 in CO‐IP detection. Additionally, the cytokines TNF‐α, IL‐1 and IL‐6 were also found. In conclusion, hsa_circ_0079662, as a ceRNA binding with hsa‐mir‐324‐5p, can regulate target gene HOXA9 and induced the mechanism of chemotherapy drug oxaliplatin resistance in CRC through the TNF‐α pathway in human colon cancer.  相似文献   

9.
10.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

11.
CD133 can be a marker of tumorigenic CSCs (cancer stem cells) in human GBM (glioblastoma multiforme), although tumorigenic CD133-negative CSCs have been also isolated. Additional evidence indicates that CSCs from GBM exhibit different phenotypes, with increasing interest in the potential significance of the different CSCs with respect to diagnosis, prognosis and the development of novel targets for treatment. We have analysed the expression of CD133 in freshly isolated cells from 15 human GBM specimens. Only 4 of them contained cells positive for AC133 by FACS analysis, and all of them yielded distinct CSC lines, whereas only 6 CSC lines were obtained from the other 11 GBMs. Of these 10 CSCs lines, we further characterized 6 CSC lines. Three CSCs grew as fast-growing neurospheres with higher clonogenic ability, whereas the remaining 3 grew as slow-growing semi-adherent spheres of lower clonogenicity. In addition, the former CSC lines displayed better differentiation capabilities than the latter ones. PCR and Western blot analysis showed that all 6 GBM CSC lines expressed CD133/prominin-1, suggesting that cells negative by FACS analysis may actually represent cells expressing low levels of CD133 undetected by FACS. Nevertheless, all the 6 CSC lines were tumorigenic in nude mice. In conclusion, CSCs from human primary GBMs show different phenotypes and variable levels of CD133 expression, but these parameters did not directly correlate with the tumorigenic potential.  相似文献   

12.
13.
Mounting evidence supports that CSCs (cancer stem cells) play a vital role in cancer recurrence. Therefore elimination of CSCs is currently considered to be an important therapeutic strategy for complete remission. A major obstacle in CSC research is the obtainment of sufficient numbers of functional CSC populations. Here, we established a method to induce bulk pancreatic cancer cells to CSCs via heterochromatin modulation. Two pancreatic cancer cell lines Panc1 and Bxpc3 were cultured for 4 days in inducing medium (mTeSR containing FBS, B27, MEK inhibitor, GSK3 inhibitor, and VPA), and another 2 days in sphere culture medium (mTeSR supplemented with B27). Then the induced cells were dissociated into single cells and cultured in suspension in sphere culture medium. It was found that the majority of induced cells formed spheres which could grow larger and be passaged serially. Characterization of Panc1 sphere cells demonstrated that the sphere cells expressed increased pancreatic cancer stem cell surface markers and stem cell genes, were more resistant to chemotherapy, and were more tumorigenic in vivo, indicating that the induced sphere cells acquired CSC properties. Thus, the inducing method we developed may be used to obtain a sufficient number of CSCs from cancer cells, and contribute to the research for CSC-targeting therapy.  相似文献   

14.
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.  相似文献   

15.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

16.
Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second‐line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB‐OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB‐OS cells have hypertriploid karyotype with 71–82 chromosomes. By comparing 3AB‐OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan® Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let‐7/98 and miR‐29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets. J. Cell. Physiol. 228: 1189–1201, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Human epidermal growth factor receptor 2 (HER2) overexpression leads to mammary tumorigenesis and its elevated levels lead to increase in cancer stem cells (CSCs), invasion, and metastasis. CSCs are resistant to radiation/chemotherapeutic drugs and are believed to be responsible for recurrence/relapse of cancer. CSCs are isolated using flow cytometry based sorting, although reliable, this technology hinders the convenient identification of molecular targets of CSCs. Therefore to understand the molecular players of increased CSC through HER2 overexpression and to develop meaningful targets for combination therapy, we isolated and characterized breast CSCs through convenient tumorsphere culture. We identified the altered protein expression in CSC as compared to non‐CSC using LC‐MS/MS and confirmed those results using qRT‐PCR and Western blotting. Ferritin heavy chain 1 (FTH1) was identified as a candidate gene, which is involved in iron metabolism and iron depletion significantly decreased the self‐renewal of CSCs. We further performed in silico analysis of altered genes in tumorsphere and identified a set of genes (PTMA, S100A4, S100A6, TNXRD1, COX‐1, COX‐2, KRT14, and FTH1), representing possible molecular targets, which in combination showed a promise to be used as prognostic markers for breast cancer.  相似文献   

19.
Y Feng  X Dai  X Li  H Wang  J Liu  J Zhang  Y Du  L Xia 《Cell proliferation》2012,45(5):413-419

Objectives

Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self‐renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b‐FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self‐renewal.

Material and methods

Colon CSCs were cultured in serum‐free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence‐activated cell sorting and western blotting.

Results

Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi‐1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal‐regulated kinase 1/2 (ERK 1/2).

Conclusions

This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号