首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinuclear CuII complexes, [Cu2(salophen)2] ( 1 ) and [Cu2(salen)2] ( 2 ), with Schiff bases derived from salicylaldehyde and o‐phenylenediamine (ophen) or ethylenediamine (en) were synthesized and characterized. They exhibit square‐planar geometry with CuN2O2 coordination, where the dianionic Schiff base acts as a tetradentate N2O2 donor ligand. Calf thymus (CT)‐DNA Binding studies revealed that the complexes possess good binding propensities (Kb=3.13×105 for 1 and Kb=2.99×105 M −1 for 2 ). They show good DNA‐cleavage abilities under oxidative and hydrolytic conditions. Complex 1 binds and cleaves DNA more efficiently as compared to 2 due to the presence of an extended aromatic phenyl ring which might be involved in an additional stacking interaction with DNA bases. From the kinetic experiments, hydrolytic DNA‐cleavage rate constants were determined as 1.54 for 1 and 0.72 h−1 for 2 . The nuclease activities of 1 and 2 are significant, giving rise to (2.03–2.88)×107‐fold rate enhancement compared to non‐catalyzed DNA cleavage.  相似文献   

2.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

3.
Many ruthenium(II) complexes show high antitumor activities, and the in vitro antitumor activities are usually related to DNA binding. We designed and synthesized two RuII polypyridyl complexes, [Ru(dmp)2(fpp)]2+ (dmp=2,9‐dimethyl‐1,10‐phenanthroline; fpp=2‐[3,4‐(difluoromethylenedioxy)phenyl]imidazo[4,5‐f] [1,10]phenanthroline and [Ru(phen)2(fpp)]2+ (phen=1,10‐phenanthroline). The DNA‐binding properties of these complexes have been investigated by spectroscopic titration, DNA melting experiments, viscosity measurements, and photoactivated cleavage. The mechanism studies of photocleavage revealed that singlet oxygen (1O2) and superoxide anion radical (O$\rm{{_{2}^{{^\cdot} -}}}$ ) may play an important role in the photocleavage. The cytotoxicity of complexes 1 and 2 have been evaluated by MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) method; complex 2 shows slightly higher anticancer potency than 1 does against all the cell lines screened.  相似文献   

4.
Four platinum complexes, formulated as [Pt(phen)(OCOCH2OR)2] (phen=1,10‐phenanthroline, R=Me, Et, iPr, or tBu), have been synthesized and well characterized by elemental analysis, IR, 1H‐NMR, 13C‐NMR and ESI‐MS spectroscopy. Replacing chloride groups of the precursor Pt(phen)Cl2 with alkoxyacetate anions greatly improved the aqueous solubility and cytotoxicity of the resulting platinum complexes. The in vitro cytotoxicity study revealed that complexes 1 – 3 were active in vitro towards four human tumor cell lines, especially complex 1 which exhibited prominent in vitro cytotoxic activity against HCT‐116 cell lines comparable to cisplatin and oxaliplatin. Flow cytometry assay indicated that representative complexes 1 and 2 exerted cytotoxicity on HCT‐116 cell lines through inducing cell apoptosis and blocking cell cycle progression in the S or G2/M phases. The interaction of representative complexes with pET28a plasmid DNA was tested by agarose gel electrophoresis, which demonstrated that complexes 1 and 2 were capable of distorting plasmid DNA mainly by covalent binding and degradation effect.  相似文献   

5.
New bis‐macrocyclic complexes of CoIII, 1 , NiII, 2 , and CuII, 3 , containing pyridyl bridges between 13‐membered macrocyclic subunits, have been synthesized via an in situ one‐pot template condensation reaction (IOPTCR). The proposed structures of these new dinuclear complexes are consistent with the data obtained from elemental analysis, molar conductance, IR, EPR, UV/VIS, 1H‐ and 13C‐NMR, and ESI‐MS. The complexes 2 and 3 possess square‐planar geometry with four secondary N‐atoms coordinated to the metal ion, while complex 1 reveals octahedral geometry in solution due to coordinated H2O molecules. DNA‐Binding properties of the complexes 1 and 3 were investigated by absorption and emission titrations, cyclic voltammetry, and viscosity measurements. Complexes 1 and 3 are strong DNA binders with binding constants, Kb, of 1.64×105 and 2.05×105 M ?1, respectively. Hyperchromism, decrease in emission intensity of DNA‐bound ethidium bromide (EB), and changes observed in the viscosity and cyclic voltammograms in the presence of added metal complexes reveals that the complexes bind to DNA predominantly by electrostatic attraction, substantiated by absorption titration with 5′‐GMP.  相似文献   

6.
A series of novel ethyl 2,7‐dimethyl‐4‐oxo‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐4,5‐dihydro‐3H‐pyrano[2,3‐d]pyrimidine‐6‐carboxylate derivatives 7a – 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF‐7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a , 7b , 7f , 7l , and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC50 ranging from 0.69 to 6.74 μm . Molecular docking studies revealed that the compounds 7a , 7b , 7f , 7l , and 7m are potent inhibitors of human DNA topoisomerase‐II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, kb, from UV/VIS absorptional binding studies of 7a and 7l with CT‐DNA were 10.77 × 104, 6.48 × 104, respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents.  相似文献   

7.
8‐Hydroxyquinoline‐7‐carboxaldehyde (8‐HQ‐7‐CA), Schiff‐base ligand 8‐hydroxyquinoline‐7‐carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO3)(H2O)2]2 were prepared from the ligand and equivalent molar amounts of Ln(NO3)?6 H2O (Ln=La3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Ho3+, Er3+, Yb3+, resp.). Ligand acts as dibasic tetradentates, binding to LnIII through the phenolate O‐atom, N‐atom of quinolinato unit, and C?N and ? O? C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O‐atoms leading to a central four‐membered (LnO)2 ring. Ligand and all of the LnIII complexes can strongly bind to CT‐DNA through intercalation with the binding constants at 105–106 M ?1. Moreover, ligand and all of the LnIII complexes have strong abilities of scavenging effects for hydroxyl (HO.) radicals. Both the antioxidation and DNA‐binding properties of LnIII complexes are much better than that of ligand.  相似文献   

8.
The interaction of a series of mixed ligand complexes of the type [Ru(NH3)4(diimine)]Cl2, where diimine=2,2-bipyridine (bipy), 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), 4,7-dimethyl-1,10-phenanthroline (4,7-dmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 3,4,7,8-tetra-methyl-1,10-phenanthroline (Me4phen), with calf thymus DNA has been studied using absorption, emission and circular dichroic spectral measurements and viscometry and electrochemical techniques. On interaction with DNA the complexes show hypochromism and red-shift in their MLCT band suggesting that the complexes bind to DNA. The magnitude of the binding constant (Kb) obtained from absorption spectral titration varies depending upon the nature of the diimine ligand: Me4phen > 5,6-dmp > 4,7-dmp > phen suggesting the use of diimine ‘face’ of the octahedral complexes in binding to DNA. The interaction of phen complex possibly involves phen ring partially inserted into the DNA base pairs. In contrast, the methyl-substituted phen complexes would involve hydrophobic interaction of the phen ring in the grooves of DNA, which is supported by hydrogen bonding interactions of the ammonia ligands with the intrastrand nucleobases. Also the shape and size of the phen ligand as modified by the methyl substituents determine the DNA binding site sizes (0.12-0.45 base pairs). The relative emission intensities (I/I0) of the DNA-bound complexes parallel the variation in Kb values. Almost all the metal complexes exhibit induced CD bands on binding to B DNA, with the 4,7-dmp and Me4phen complexes inducing certain structural modifications on the biopolymer. DNA melting curves obtained in the presence of metal complexes reveal a monophasic melting of the DNA strands, the Me4phen complex exhibiting a slightly enhanced tendency to stabilize the double-stranded DNA. There were slight to appreciable changes in the relative viscosities of DNA, which are consistent with enhanced hydrophobic interaction of the methyl-substituted phen rings. Upon interaction with CT DNA, the Me4phen, 4,7-dmp and 5,6-dmp complexes, in contrast to bipy, phen and 2,9-dmp complexes, show a decrease in anodic peak current in their cyclic voltammograms suggesting that they exhibit enhanced DNA binding. DNA cleavage experiments show that all the complexes induce cleavage of pBR322 plasmid DNA, the Me4phen and 5,6-dmp complexes being remarkably more efficient than other complexes.  相似文献   

9.
A simple polyether‐tethered pyrrole‐polyamide dimer 1 was synthesized in 50% yield from the reaction of 2,2,2‐trichloro‐1‐(1‐methyl‐4‐nitro‐1H‐pyrrol‐2‐yl)ethanone with 2,2′‐[1,2‐ethanediylbis(oxy)]bisethanamine, and fully characterized on the basis of 1H‐ and 13C‐NMR, MS, HR‐MS, and IR data. Agarose gel‐electrophoresis study of the cleavage of plasmid pBR322 DNA by the complexes of compound 1 with seven metal ions indicated that most of the metal complexes were capable of efficiently cleaving DNA at pH 7.0 and 37°. Among them, the CuII complex exhibited the highest activity, with the maximal catalytic rate constant kmax and Michaelis constant KM being 5.61 h?1 and 7.30 mM , respectively. Spectroscopic, ESI‐MS, ethidium‐bromide (EB) displacement, and viscosity experiments indicated that compound 1 could form a 1 : 1 complex with CuII ion, and that this complex showed moderate binding affinity toward calf‐thymus DNA.  相似文献   

10.
A new μ‐oxamido‐bridged dicopper(II) complex, [Cu2(papo)(H2O)‐ (phen)]Cl·CH3OH·H2O, where H3papo and phen represent N‐(2‐hydroxyphenyl)‐N'‐(3‐aminopropyl)oxamide and 1,10‐phenanthroline, respectively, has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. The complex crystallizes in the triclinic space group P‐1. Each copper(II) ion is located in a slightly distorted square‐pyramidal environment. The Cu···Cu distance through the oxamide bridge is 5.1848(7) Å. The three‐dimensional supramolecular structure is built‐up by hydrogen bonds and π–π stacking interactions. The dicopper(II) complex exhibits cytotoxic activity against the SMMC‐7721 and A549 cell lines. The reactivity toward herring sperm DNA and protein bovine serum albumin (BSA) reveals that the dicopper(II) complex can interact with the DNA by the intercalation mode, and effectively quench the intrinsic fluorescence of BSA via a static mechanism. The influence of hydrophobicity of the bridging ligand on DNA‐binding properties and in vitro cytotoxic activities of this kind of dicopper(II) complexes was investigated.  相似文献   

11.
The mononuclear dipeptide‐based CuII complexes [CuII(trp‐phe)(phen)(H2O)] ⋅ ClO4 ( 1 ) and [CuII(trp‐phe)(bpy)(H2O)] ⋅ ClO4 ( 2 ) (trp‐phe=tryptophanphenylalanine, phen=1,10‐phenanthroline, bpy=2,2′‐bipyridine) were isolated, and their interaction with DNA was studied. They exhibit intercalative mode of interaction with DNA. The intercalative interaction was quantified by Stern Volmer quenching constant (Ksq=0.14 for 1 and 0.08 for 2 ). The CuII complexes convert supercoiled plasmid DNA into its nicked circular form hydrolytically at physiological conditions at a concentration as low as 5 μM (for 1 ) and 10 μM (for 2 ). The DNA hydrolysis rates at a complex concentration of 50 μM were determined as 1.74 h−1 (R=0.985) for 1 and 0.65 h−1 (R=0.965) for 2 . The rate enhancement in the range of 2.40–4.10×107‐fold compared to non‐catalyzed double‐stranded DNA is significant. This was attributed to the presence of a H2O molecule in the axial position of the Cu complexes.  相似文献   

12.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Abstract

The chemistry of Co(II) complexes showing efficient light induced DNA cleavage activity, binding propensity to calf thymus DNA and antibacterial PDT is summarized in this article. Complexes of formulation [Co(mqt)(B)2]ClO4 1–3 where mqt is 4-methylquinoline-2-thiol and B is N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz 3) have been prepared and characterized. The DNA-binding behaviors of these three complexes were explored by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes 1, 2 and 3 were determined to be 1.6?×?103?M?1, 1.1?×?104?M?1 and 6.4?×?104?M?1 respectively. The experimental results suggest that these complexes interact with DNA through groove binding mode. The complexes show significant photocleavage of supercoiled (SC) DNA proceeds via a type-II process forming singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against E. coli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.  相似文献   

14.
Metal susceptibility assays and spot plating were used to investigate the antimicrobial activity of enantiopure [Ru(phen)2dppz]2+ (phen =1,10‐phenanthroline and dppz = dipyrido[3,2‐a:2´,3´‐c]phenazine) and [μ‐bidppz(phen)4Ru2]4+ (bidppz =11,11´‐bis(dipyrido[3,2‐a:2´,3´‐c]phenazinyl)), on Gram‐negative Escherichia coli and Gram‐positive Bacillus subtilis as bacterial models. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined for both complexes: while [μ‐bidppz(phen)4Ru2]4+ only showed a bactericidal effect at the highest concentrations tested, the antimicrobial activity of [Ru(phen)2dppz]2+ against B. subtilis was comparable to that of tetracyline. In addition, the Δ‐enantiomer of [Ru(phen)2dppz]2+ showed a 2‐fold higher bacteriostatic and bactericidal effect compared to the Λ‐enantiomer. This was in accordance with the enantiomers relative binding affinity for DNA, thus strongly indicating DNA binding as the mode of action.  相似文献   

15.
A large bathochromic shift (?50 nm) and emission in the near infrared is observed by attaching arylethynyl groups at the 3,8-positions of the 1,10-phenanthroline ligand (phen) of [Os(bipy)2(phen)]2+ (where bipy = 2,2′-bipyridine). Thus [Os(bipy)2(3,8-di-4-methoxyphenylethynyl-1,10-phenathroline)]2+ emits at 795 nm, while [Os(bipy)2(3,8-diphenylethynyl-1,10-phenanthroline)]2+ emits at 815 nm. According to this trend it would have been expected that [Os(bipy)2(3,8-di-4-nitrophenylethynyl-1,10-phenathroline)]2+ emits farther in the near infrared. Nevertheless, this complex is not photoluminescent because of intramolecular electron transfer quenching of the MLCT excited state by the nitroaromatic group. These results set structural and redox potential standards in the design of near infrared emitters based on [Os(bipy)2(phen)]2+ type complexes.  相似文献   

16.
Drug‐protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2‐adrenoceptor (β 2AR) by linkage of the receptor on macroporous silica gel surface through N ,N ′‐carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site‐directed molecular docking. Subsequent application of immobilized β 2AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount–dependent method. The association constants of protopine to β 2AR by the 2 methods were (1.00 ± 0.06) × 105M−1 and (1.52 ± 0.14) × 104M−1. The numbers of binding sites were (1.23 ± 0.07) × 10−7M and (9.09 ± 0.06) × 10−7M, respectively. These results indicated that β 2AR is the specific target for therapeutic action of protopine in vivo. The target‐drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount–dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high‐throughput drug‐receptor interaction analysis.  相似文献   

17.
Twelve lanthanide complexes with cinnamate (cin) and 1,10‐phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3phen (RE3+ = La3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Tm3+, Yb3+, Lu3+). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3phen to Lu(cin)3phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Two copper(II) terpyridine complexes, [Cu(atpy)(NO3)(H2O)](NO3) ? 3H2O ( 1 ) and [Cu(ttpy)(NO3)2] ( 2 ) (atpy = 4′‐p‐N9‐adeninylmethyl‐phenyl‐2,2′:6,2″‐terpyridine; ttpy = 4′‐p‐tolyl‐2,2′:6,2″‐terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC‐3). The cytotoxicity of the complex 1 was lower than that of the complex 2 . Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double‐stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA‐binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA‐binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:295–302, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20292  相似文献   

20.
As a xanthine derivative, doxofylline is believed to be dominant for fighting against asthma in practice. Unlike other xanthines, the antiasthmatic effects of doxofylline lack any definite proof of target and mediating mechanism according to previous reports. In this work, the interaction between doxofylline and β2‐AR was investigated by high performance affinity chromatography using frontal analysis and nonlinear model. The methodology involved the immobilization of β2‐AR on the silica gel by a random linking method, the determination of the binding parameters by frontal analysis and nonlinear chromatography and the exploration of the binding mechanism by site‐directed molecular docking. The association constant for doxofylline binding to immobilized β2‐AR was determined to be 7.70 × 104 M?1 by nonlinear chromatography and 5.91 × 104 M?1 by frontal analysis. Ser169 and Ser173 were the binding sites for the receptor–drug interaction on which hydrogen bond was believed to be the main driven force during the interaction. These results indicated that the antiasthmatic effects of doxofylline may be behind the mediating mechanism of β2‐AR. High performance affinity chromatography based on immobilized receptor has potential to become an alternative for drug target confirmation and drug–receptor interaction analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号