首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study deals with isolation and characterization of a novel hybrid-proline-rich protein gene (CcHyPRP) promoter from pigeonpea. Real time PCR analysis revealed that CcHyPRP expression was strongly induced by dehydration, salt, Abscisic acid (ABA) and Salicylic acid (SA) treatments. The CcHyPRP promoter, isolated by genome-walking method, contained 1112 bp and showed the presence of various cis -regulatory elements necessary for tissue specific expression and stress responsiveness. Different 5′ deletions of the promoter were generated and were used to drive the expression of β-glucuronidase reporter gene (gusA) in Arabidopsis thaliana. Histochemical and fluorometric assays confirmed that GUS expression driven by the full-length fragment (1112 bp) was higher when compared to different deletion fragments. Under normal conditions, GUS expression was predominantly detected in the roots and hypocotyls of transformants, while under mannitol, NaCl, ABA and SA treatment conditions higher GUS expression levels were observed in the roots and leaves. However, the GUS expression was mostly confined to the roots of transformants carrying 477 and 300 bp promoter regions. The results amply indicate that CcHyPRP promoter is regulated by different stress factors, and as such the promoter can be deployed in genetic engineering of crop plants for enhanced abiotic stress tolerance.  相似文献   

2.
The H+-pyrophosphatase (H +-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H +-PPase gene ScHP1 in rye (Secale cereale L. ‘Qinling’). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H +?PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H +-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.  相似文献   

3.
4.
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.  相似文献   

5.
S-Adenosylmethionine decarboxylase (SAMDC) is a key rate-limiting enzyme involved in polyamines biosynthesis, and it plays important roles in plant growth, development and stresses response. However, no SAMDC gene was reported in rubber tree. Here we report characteristics of an SAMDC gene (HbSAMDC1) in rubber tree. HbSAMDC1 contains a 1080 bp open reading frame (ORF) encoding 359 amino acids. Quantitative real-time PCR analyses revealed that HbSAMDC1 exhibited distinct expression patterns in different tissues and was regulated by various stresses, including drought, cold, salt, wounding, and H2O2 treatments. HbSAMDC1 5′ untranslated region (UTR) contains a highly conserved overlapping tiny and small upstream ORFs (uORFs), encoding 2 and 52 amino acid residues, respectively. No introns were located in the main ORF of HbSAMDC1, whereas two introns were found in the 5′ UTR. In transgenic tobaccos, the highly conserved small uORF of HbSAMDC1 is found to be responsible for translational repression of downstream β-glucuronidase reporter. To our knowledge, this is the first report on molecular cloning, expression profiles, and 5′ UTR characteristics of HbSAMDC1. These results lay solid foundation for further elucidating HbSAMDC1 function in rubber tree.  相似文献   

6.
Arabidopsis glucuronokinase (AtGlcAK), as a member of the GHMP kinases family, is implicated in the de novo synthesis of UDP-glucuronic acid (UDP-GlcA) by the myo-inositol oxygenation pathway. In this study, two T-DNA insertion homozygous mutants of AtGlcAK, atglcak-1 and atglcak-2, were identified. AtGlcAK was highly expressed in roots and flowers. There was reduced primary root elongation and lateral root formation in atglcak mutants under osmotic stress. The atglcak mutants displayed enhanced stomatal opening in response to abscisic acid (ABA), elevated water loss and impaired drought tolerance. Under water stress, the accumulation of reducing and soluble sugars was reduced in atglcak mutants, and the metabolism of glucose and sucrose was affected by the synthetic pathway of UDP-GlcA. Furthermore, a reduced level of starch in atglcak mutants was observed under normal conditions. The phylogenetic analysis suggested that GlcAK was conserved in numerous dicots and monocots plants. In short, AtGlcAK mutants displayed hypersensitivity to ABA and reduced root development under water stress, rendering the plants more susceptible to drought stress.  相似文献   

7.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Key message

Overexpression of SoSnRK2.1 improved drought tolerance and growth of tobacco plants.

Abstract

Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. In this research, SoSnRK2.1 gene was cloned from sugarcane variety GT21 and characterized under various stresses. The cloned SoSnRK2.1 gene has a complete open reading frame of 1002 bp, encoding a peptide of 333 amino acids. The amino acid sequence of SoSnRK2.1 has high homology with those of Zea mays and Oryza sativa, which belongs to SnRK2 s families. The expression of SoSnRK2.1 under stresses of drought, PEG, and ABA indicated that this gene is involved in stress responses in sugarcane. To investigate the gene function, fusional SoSnRK2.1-GFP-pBI121 under control of CaMV 35S was transformed into tobacco plants. Growth and morphology of transgenic plants demonstrated that overexpression of SoSnRK2.1 enhanced drought tolerance in tobacco. Transgenic tobacco plants had lower levels of ion leakage (IL), and contents of maleic dialdehyde (MDA) and H2O2, with higher activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and chlorophyll and relative water content (RWC) than those in wide type (WT) tobacco. SoSnRK2.1 was stably transmitted to the next generation via sexual reproduction. Though the data presented here are from a heterologous system, it is highly likely that SoSnRK2.1 is involved in the abiotic stress response in sugarcane and may be playing an important role in regulation of its growth.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号