首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside, 2-acetamido-4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-deoxy-β-D-glucopyranoside (di-N-acetyl-β-chitobioside), and O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (tri-N-acetyl-β-chitotrioside) were obtained in good yield from the corresponding peracetylated glycosyl chlorides by condensation with the sodium salt of 4-methylumbelliferone in N,N-dimethylformamide. The trisaccharide glycoside is hydrolyzed by lysozyme and is, therefore, a convenient substrate for this enzyme; the 4-methylumbelliferone produced can be determined by the increase of the fluorescence intensity at 442 nm. The intensity of the fluorescence of 4-methylumbelliferyl tri-N-acetyl-β-chitotrioside is enhanced upon binding with lysozyme without modification of the position of the absorption maximum. The binding constant and the rate of hydrolysis of the trisaccharide glycoside by lysozyme are higher than those obtained with p-nitrophenyl tri-N-acetyl-β-chitotrioside.  相似文献   

2.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

3.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

4.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

5.
Methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside was prepared in excellent yield from methyl 2-benzamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside by alkaline hydrolysis, followed by selective N-acetylation. Treatment with 60% acetic acid at room temperature gave syrupy methyl 2-acetamido-2-deoxy-β-D-glucofuranoside, characterized by a crystalline tri-O-p-nitrobenzoyl derivative. The same treatment, at 100° gave methyl 2-acetamido-2-deoxy-β-D-glucopyranoside. In an alternative procedure, the selective N-acetylation was performed after acetic acid hydrolysis of methyl 2-amino-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside. Several derivatives of methyl 2-acetamido-2-deoxy-β-D-glucofuranoside were prepared and compared with the corresponding pyranosides. The furanoside structure was clearly demonstrated by mass spectrometry and periodate oxidation.  相似文献   

6.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

7.
The condensation of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl bromide and 2,3,4,6-tetra-O-benzyl-D-mannopyranosyl chloride with benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside (1), under Koenigs-Knorr conditions, gave the fully benzylated derivatives of benzyl 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranoside, benzyl 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside, and benzyl 2-acetamido-2-deoxy-4-O-α-D-mannopyranosyl-α-D-glucopyranoside. Three further compounds, namely, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)-α-D-glucopyranoside, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D)-mannopyranosyl)-α-D-glucopyranoside, and benzyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-di-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-α-D-glucopyranoside, were formed by reaction of the respective glycosyl halide with benzyl 2-acetamido-3-O-benzyl-2-deoxy-α-D-glucopyranoside present as contaminant in 1.  相似文献   

8.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

9.
The use of the chloroacetyl group as a protecting group has been studied for a 2-methylglyco-[2′,1′:4,5]-2-oxazoline. The reaction of chloroacetyl chloride or chloroacetic anhydride with 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-β-d-glucopyra-nose provided 2-acetamido-1,3,4-tri-O-acetyl-6-O-(chloroacetyl)-2-deoxy-β-d-glucopyranose which, on treatment with anhydrous ferric chloride in dichloromethane, produced the desired oxazoline. The glycosylating capability of the oxazoline has been investigated with aglycon hydroxides, to give the corresponding 2-acetamido-2-deoxy-β-d-glucopyranosides. The chloroacetyl group can be selectively removed by treatment with thiourea, and migration of O-acetyl groups was not observed under these conditions.  相似文献   

10.
Condensation of 3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal with 2-methyl-(3,4,6-tri-O-acetyl- 1,2-dideoxy-α-D-glucopyrano)-[2′, 1′:4,5]-2-oxazoline in the presence of a catalytic amount of p-toluenesulfonic acid afforded crystalline 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (3) in 25% yield. Catalytic deacetylation of 3 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave 2-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-mannose (4). Treatment of 3 with boiling 0.5% methanolic hydrogen chloride under reflux gave methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannopyranoside (5) and methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannofuranoside (6). The inhibitory activities of 4, 5, and 6 against the hemagglutinating and mitogenic activities of Lens culinaris and Pisum sativum lectins and concanavalin A were assayed. From the results of these hapten inhibition studies, subtle differences of specificity between these D-mannose-specific lectins were confirmed.  相似文献   

11.
G.l.c.-mass spectrometry has been used to characterize the products of N-deacetylation-nitrous acid deamination of per-O-methylated derivatives (8–11) of methyl 2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-glucopyranoside(1), methyl (2) and benzyl (3) 2-acetamido-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranosides, and methyl 2-acetamido-2-deoxy-6-O-β-D-galactopyranosyl-α-D-glucopyranoside (4). 2,5-Anhydrohexoses have been converted into alditol trideuteriomethyl ethers, alditol acetates, and aldononitriles. The importance of side reactions that lead to the formation of 2-deoxy-2-C-formylpentofuranosides is discussed.  相似文献   

12.
The glycosylating activity of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-galactopyrano)-[2′,1′:4,5]-2-oxazoline has been tested in reaction with partially protected saccharides having free primary or secondary hydroxyl groups or with hydroxy amino acids. 3-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl)-N-benzyloxycarbonyl-L-serine benzyl ester (3), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-galactopyranose (5), p-nitrophenyl 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-2-deoxy-β-D-glucopyranoside (7), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (9), and 3-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (11) were synthesized in high yield.  相似文献   

13.
Syntheses of 3- and 4-O-β-D-galactopyranosyl-L-rhamnose and of 3-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-L-rhamnose are described. Comparison of the inhibitory powers of these three disaccharides with those of a selection of other disaccharides on the precipitin reaction between Type VII antipneumococcal horse serum and Type VII pneumococcal polysaccharide or Tamarind A polysaccharide showed that O-D-galactosyl- and O-(2-acetamido-2-deoxy-D-glucosyl)-L-rhamnose groups are important serological determinants in the pneumococcal Type VII polysaccharide.  相似文献   

14.
2-Acetamido-2-deoxy-5-thio-d-glucopyranose (12) has been synthesized from methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (1). Benzoylation of 1, followed by O-deisopropylidenation, gave methyl 2-acetamido-3-O-benzoyl-2-deoxy-β-d-glucofuranoside, which was converted, via selective benzoylation and mesylation, into methyl 2-acetamido-3,6-di-O-benzoyl-2-deoxy-5-O-mesyl-β-d-glucofuranoside (5). Treatment of 6, formed by the action of sodium methoxide in chloroform on 5, with thiourea gave methyl 2-acetamido-2,5,6-trideoxy-5,6-epithio-β-d-glucofuranoside (7), which was converted into the 5-thio compound 9 by cleavage of the epithio ring in 7 with potassium acetate. Alkaline treatment of 10, derived from 9 by hydrolysis, afforded the title compound. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

15.
2-Acetamido-2- deoxy-6-O-, -xylopyranosyl-O-D-glucopyranose has been synthesized in crystalline form by condensation of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl chloride (1) with benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranoside (2), followed by O-deacetylation and catalytic hydrogenation. Condensation of 2 with 2,3,4-tri-O-chlorosulfonyl-β-D-xylopyranosyl chloride, followed by dechlorosulfonylation and acetylation, gave benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-(2,3,4-tri-O-acetyl-α-D-xylopyranosyl)β-D-glucopyranoside in crystalline form. O-Deacetylation, followed by catalytic hydrogenation, gave 2-acetamido-2-deoxy-6-O-α-D-xylopyranosyl-α-D-glucopyranose in crystalline form.  相似文献   

16.
N-acetylglucosaminyltransferase V (GnT-V) is one of the most relevant glycosyltransferases to tumor invasion and metastasis. Based on previous findings of molecular recognition between GnT-V and synthetic substrates, we designed and synthesized a p-iodophenyl-derivatized trisaccharide, 2-(4-iodophenyl)ethyl 6-O-[2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-d-mannopyranosyl]-β-D-glucopyranoside (IPGMG, 1) and its radiolabeled form, [(125)I]IPGMG ([(125)I]1), for use in assays of GnT-V activity in vitro. The tributyltin derivative, 2-[4-(n-tributylstannyl)phenyl]ethyl 6-O-[2-O-(3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-β-D-glucopyranosyl)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl]-2,3,4-tri-O-acetyl-β-D-glucopyranoside (21), was synthesized as a precursor for the preparation of [(125)I]1. The iododestannylation of 21 using hydrogen peroxide as an oxidant followed by deacetylation yielded [(125)I]1. When [(125)I]1 was incubated in GnT-V-expressing cells with a UDP-GlcNAc donor, the production of β1-6GlcNAc-bearing IPGMG (IPGGMG, 2) was confirmed by radio-HPLC. In kinetic analysis, 1 was found to be a good substrate with a K(m) of 23.7 μM and a V(max) of 159 pmol/h. μg protein. [(125)I]1 would therefore be a useful synthetic substrate for the quantitative determination of GnT-V activity.  相似文献   

17.
18.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

19.
Benzyl 2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-glucopyranoside (1) was chosen as a model bioside to develop a standard procedure for the selective cleavage of glycosidic linkages in polysaccharides containing 2-amino-2-deoxyhexose residues. Treatment of 1 with hydrazine in the presence of hydrazine sulphate resulted in quantitative N-deacetylation with the formation of benzyl 2-amino-2-deoxy-3-O-β-D-galactopyranosyl-α-D-glucopyranoside (2). The galactosyl glycosidic linkage in 2 could be selectively cleaved by acid hydrolysis. Oxidation of 2 with periodate destroyed the galactose residue. Treatment of 2 with nitrous acid cleaved the 2-amino-2-deoxy-D-glucosyl linkage to give 2,5-anhydro-3-O-β-D-galactopyranosyl-D-mannose (3) and benzyl alcohol.  相似文献   

20.
2-Acetamido-2-deoxy-β-D-glucopyranosyl isothiocyanate (I) was obtained by the action of thiophosgene on 2-acetamido-2-deoxy-β-D-glucopyranosylamine. Compound I irreversibly inhibits the human and boar N-acetyl-β-D-hexosaminidase; the dialysis does not restore the enzyme activity. N-Acetyl-D-glucosamine, the competitive inhibitor of N-acetyl-β-D-hexosaminidase, protects the enzyme from inactivation, that testifies to the binding of isothiocyanate I in the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号