共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced online monitoring of cell culture off‐gas using proton transfer reaction mass spectrometry 下载免费PDF全文
Timo Schmidberger Rene Gutmann Karl Bayer Jennifer Kronthaler Robert Huber 《Biotechnology progress》2014,30(2):496-504
Mass spectrometry has been frequently applied to monitor the O2 and CO2 content in the off‐gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR‐MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds. In order to discriminate between compounds of non‐metabolic and metabolic origin cell free experiments and fed‐batch cultivations with a recombinant CHO cell line were conducted. As a result, in total eight volatiles showing high relevance to individual cultivation or cultivation conditions could be identified. Among the detected compounds methanethiol, with a mass‐to‐charge ratio of 49, qualifies as a key candidate in process monitoring due to its strong connectivity to lactate formation. Moreover, the versatile and complex data sets acquired by PTR MS provide a valuable resource for statistical modeling to predict non direct measurable parameters. Hence, partial least square regression was applied to the complete spectra of volatiles measured and important cell culture parameters such as viable cell density estimated (R2 = 0.86). As a whole, the results of this study clearly show that PTR‐MS provides a powerful tool to improve bioprocess‐monitoring for mammalian cell culture. Thus, specific volatiles emitted by cells and measured online by the PTR‐MS and complex variables gained through statistical modeling will contribute to a deeper process understanding in the future and open promising perspectives to bioprocess control. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:496–504, 2014 相似文献
2.
Bioprocesses for therapeutic protein production typically require significant resources to be invested in their development. Underlying these efforts are analytical methods, which must be fit for the purpose of monitoring product and contaminants in the process. It is highly desirable, especially in early‐phase development when material and established analytical methods are limiting, to be able to determine what happens to the product and impurities at each process step with small sample volumes in a rapid and readily performed manner. This study evaluates the utility of surface‐enhanced laser desorption ionization mass spectroscopy (SELDI‐MS), known for its rapid analysis and minimal sample volumes, as an analytical process development tool. In‐process samples from an E. coli process for apolipoprotein A‐IM (ApoA‐IM) manufacture were used along with traditional analytical methods such as HPLC to check the SELDI‐MS results. ApoA‐IM is a naturally occurring variant of ApoA‐I that appears to confer protection against cardiovascular disease to those that carry the mutated gene. The results show that, unlike many other analytical methods, SELDI‐MS can handle early process samples that contain complex mixtures of biological molecules with limited sample pretreatment and thereby provide meaningful process‐relevant information. At present, this technique seems most suited to early‐phase development particularly when methods for traditional analytical approaches are still being established. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
3.
Chemodiversity in the Fingerprint Analysis of Volatile Organic Compounds (VOCs) of 35 Old and 7 Modern Apple Cultivars Determined by Proton‐Transfer‐Reaction Mass Spectrometry (PTR‐MS) in Two Different Seasons 下载免费PDF全文
Flavio Ciesa Irene Höller Walter Guerra Jennifer Berger Josef Dalla Via Michael Oberhuber 《化学与生物多样性》2015,12(5):800-812
Volatile organic compounds (VOCs) are chemical species that play an important role in determining the characteristic aroma and flavor of fruits. Apple (Malus × domestica Borkh .) cultivars differ in their aroma and composition of VOCs. To determine varietal differences in the aroma profiles, VOCs emitted by 7 modern and 35 old apple cultivars were analyzed using Proton Transfer Reaction Mass Spectrometry (PTR‐MS). PTR‐MS is a rapid, reproducible, and non‐destructive spectrometric technique for VOC analysis of single fruits, developed for direct injection analysis. In the present study, we analyzed the differences in the emission of VOCs from single fruits at harvest and after a storage period of 60±10 days, followed by 3 d of shelf life. Our results show that VOC profile differences among apple cultivars were more pronounced after storage than at harvest. Furthermore, chemodiversity was higher in old cultivars compared to modern cultivars, probably due to their greater genetic variability. Our data highlight the importance of storage and shelf life are crucial for the development of the typical aroma and flavor of several apple cultivars. The validity of the method is demonstrated by comparison of two different harvest years. 相似文献
4.
Ozone‐induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low‐level ozone exposure in Phaseolus vulgaris 下载免费PDF全文
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre‐exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol?1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol?1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. 相似文献
5.
A sampling system for on-line monitoring of organic compounds of low volatility in complex fermentation media uses membrane inlet mass spectrometry (MIMS). A Syringe pump draws a continuous flow of microfiltered broth from the reactor and circulates it after acidification through a membrane inlet, in which a membrane is the only interface between the sample and the high vacuum of a mass spectrometer. All operations run automatically, i.e., sampling, acidification measurement, and calibration. The on-stream acidification enables MIMS monitoring of carboxylic acids, as they must be undissociated in order to pass the hydrophobic membrane. The performance of the monitoring system was tested by measurements of standard solutions of phenoxyacetic acid (POAA, the sie chain precursor of penicillin-V) as well as on POAA during 200 h penicillin-V fermentation. During the entire fermentation POAA was monitored n low millimolar concentrations with high accuracy and fast response to step changes in POAA concentration. Tandem mass spectrometry (MS/MS) allowed direct identification of peaks in the mass spectrum of the broth that were not accounted for by POAA. These peaks were identified as SO(2) and SCO. (c) 1994 John Wiley & Sons, Inc. 相似文献
6.
7.
8.
Nobuyuki Kutsukake Koki Ikeda Seijiro Honma Migaku Teramoto Yusuke Mori Ikuo Hayasaka Rain Yamamoto Takafumi Ishida Yasuhiro Yoshikawa Toshikazu Hasegawa 《American journal of primatology》2009,71(8):696-706
Owing to its high temporal sensitivity, saliva has distinct advantages for measuring steroids, compared with other noninvasive samples such as urine and feces. Here, we report the validity of assaying salivary cortisol (C) and testosterone (T) using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) in captive male chimpanzees, Pan troglodytes. For both the C and T concentrations, we found positive relationships between saliva and plasma. The concentrations of C and T in saliva showed clear patterns of diurnal fluctuation, whereas those in urine and feces did not. These results suggest that the salivary steroid concentrations can be regarded as good indicators of circulating steroid levels. We also developed and validated an efficient method for collecting saliva samples from cotton rope. Although rope includes inherent steroid‐like compounds and may affect the accuracy of steroid measurements, our rope‐washing procedures effectively removed intrinsic steroidal materials. There was a significant association between the C and T concentrations measured from saliva collected from rope licked by the chimpanzees and those measured from saliva collected directly from the mouth. Salivary T values estimated by LC/MS‐MS were similar to those measured by radioimmunoassay. The results indicate the usefulness of saliva as a noninvasive steroid measure and that steroids in the saliva of chimpanzees can be accurately measured by LC‐MS/MS. Am. J. Primatol. 71:696–706, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
9.
Identification of peptide‐binding sites within BSA using rapid,laser‐induced covalent cross‐linking combined with high‐performance mass spectrometry 下载免费PDF全文
Melinda Hauser Chen Qian Steven T. King Sarah Kauffman Fred Naider Robert L. Hettich Jeffrey M. Becker 《Journal of molecular recognition : JMR》2018,31(2)
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner. 相似文献
10.
Shi Y Shen B Xiang P Yan H Shen M 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(30):3161-3166
Ethyl glucuronide (EtG) has been shown to be a suitable marker of excessive alcohol consumption. Determination of EtG in hair samples may help to differentiate social drinkers from alcoholics, and this testing can be widely used in forensic science, treatment programs, workplaces, military bases as well as driving ability test to provide legal proof of drinking. A method for determination of EtG in hair samples using large volume injection-gas chromatography-tandem mass spectrometry (LVI-GC/MS/MS) was developed and validated. Hair samples (in 1 mL deionized water) were ultrasonicated for 1h and incubated overnight; these samples were then deproteinated to remove impurities and derivatisated with 15 μL of pyridine and 30 μL of BSTFA. EtG was detected using GC/MS/MS in multiple-reaction monitoring mode. This method exhibited good linearity: y=0.0036 x+0.0437, R2=0.9993, the limit of detection and the limit of quantification were 5 pg/mg and 10 pg/mg, respectively. The extraction recoveries were more than 60%, and the inter-day and intra-day relative standard deviations (RSD) were less than 15%. This method has been applied to the analysis of EtG in hair samples from 21 Chinese subjects. The results for samples obtained from all of those who were teetotallers were negative, and the results for the other 15 samples ranged from 10 to 78 pg/mg, except for one negative sample. These data are the basis for interpretation of alcohol abuse. 相似文献
11.
Taiyun Kim Irene Rui Chen Benjamin L. Parker Sean J. Humphrey Ben Crossett Stuart J. Cordwell Pengyi Yang Jean Yee Hwa Yang 《Proteomics》2019,19(13)
The increasing role played by liquid chromatography‐mass spectrometry (LC‐MS)‐based proteomics in biological discovery has led to a growing need for quality control (QC) on the LC‐MS systems. While numerous quality control tools have been developed to track the performance of LC‐MS systems based on a pre‐defined set of performance factors (e.g., mass error, retention time), the precise influence and contribution of the performance factors and their generalization property to different biological samples are not as well characterized. Here, a web‐based application (QCMAP) is developed for interactive diagnosis and prediction of the performance of LC‐MS systems across different biological sample types. Leveraging on a standardized HeLa cell sample run as QC within a multi‐user facility, predictive models are trained on a panel of commonly used performance factors to pinpoint the precise conditions to a (un)satisfactory performance in three LC‐MS systems. It is demonstrated that the learned model can be applied to predict LC‐MS system performance for brain samples generated from an independent study. By compiling these predictive models into our web‐application, QCMAP allows users to benchmark the performance of their LC‐MS systems using their own samples and identify key factors for instrument optimization. QCMAP is freely available from: http://shiny.maths.usyd.edu.au/QCMAP/ . 相似文献
12.
13.
Selected ion flow tube-mass spectrometry has been used to measure the volatile compounds occurring in the headspace of urine samples inoculated with common urinary tract infection (UTI)-causing microbes Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, or Candida albicans. This technique has the potential to offer rapid and simple diagnosis of the causative agent of UTIs. 相似文献
14.
Teck Yew Low 《Proteomics》2023,23(21-22):2300209
Most proteins function by forming complexes within a dynamic interconnected network that underlies various biological mechanisms. To systematically investigate such interactomes, high-throughput techniques, including CF-MS, have been developed to capture, identify, and quantify protein-protein interactions (PPIs) on a large scale. Compared to other techniques, CF-MS allows the global identification and quantification of native protein complexes in one setting, without genetic manipulation. Furthermore, quantitative CF-MS can potentially elucidate the distribution of a protein in multiple co-elution features, informing the stoichiometries and dynamics of a target protein complex. In this issue, Youssef et al. (Proteomics 2023, 00, e2200404) combined multiplex CF-MS and a new algorithm to study the dynamics of the PPI network for Escherichia coli grown under ten different conditions. Although the results demonstrated that most proteins remained stable, the authors were able to detect disrupted interactions that were growth condition specific. Further bioinformatics analyses also revealed the biophysical properties and structural patterns that govern such a response. 相似文献
15.
Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification 下载免费PDF全文
B. Guixer X. Arroyo I. Belda E. Sabidó M. Teixidó E. Giralt 《Journal of peptide science》2016,22(9):577-591
The blood–brain barrier (BBB) is a biological barrier that protects the brain from neurotoxic agents and regulates the influx and efflux of molecules required for its correct function. This stringent regulation hampers the passage of brain parenchyma‐targeting drugs across the BBB. BBB shuttles have been proposed as a way to overcome this hurdle because these peptides can not only cross the BBB but also carry molecules which would otherwise be unable to cross the barrier unaided. Here we developed a new high‐throughput screening methodology to identify new peptide BBB shuttles in a broadly unexplored chemical space. By introducing d‐ amino acids, this approach screens only protease‐resistant peptides. This methodology combines combinatorial chemistry for peptide library synthesis, in vitro models mimicking the BBB for library evaluation and state‐of‐the‐art mass spectrometry techniques to identify those peptides able to cross the in vitro assays. BBB shuttle synthesis was performed by the mix‐and‐split technique to generate a library based on the following: Ac‐d‐ Arg‐XXXXX‐NH2, where X were: d‐ Ala (a), d‐ Arg (r), d‐ Ile (i), d‐ Glu (e), d‐ Ser (s), d‐ Trp (w) or d‐ Pro (p). The assays used comprised the in vitro cell‐based BBB assay (mimicking both active and passive transport) and the PAMPA (mimicking only passive diffusion). The identification of candidates was determined using a two‐step mass spectrometry approach combining LTQ‐Orbitrap and Q‐trap mass spectrometers. Identified sequences were postulated to cross the BBB models. We hypothesized that some sequences cross the BBB through passive diffusion mechanisms and others through other mechanisms, including paracellular flux and active transport. These results provide a new set of BBB shuttle peptide families. Furthermore, the methodology described is proposed as a consistent approach to search for protease‐resistant therapeutic peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
16.
Thomas Eixelsberger John M. Woodley Bernd Nidetzky Regina Kratzer 《Biotechnology and bioengineering》2013,110(8):2311-2315
Escherichia coli cells co‐expressing genes coding for Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase were used for the bioreduction of o‐chloroacetophenone with in situ coenzyme recycling. The product, (S)‐1‐(2‐chlorophenyl)ethanol, is a key chiral intermediate in the synthesis of polo‐like kinase 1 inhibitors, a new class of chemotherapeutic drugs. Production of the alcohol in multi‐gram scale requires intensification and scale‐up of the biocatalyst production, biotransformation, and downstream processing. Cell cultivation in a 6.9‐L bioreactor led to a more than tenfold increase in cell concentration compared to shaken flask cultivation. The resultant cells were used in conversions of 300 mM substrate to (S)‐1‐(2‐chlorophenyl)ethanol (e.e. >99.9%) in high yield (96%). Results obtained in a reaction volume of 500 mL were identical to biotransformations carried out in 1 mL (analytical) and 15 mL (preparative) scale. Optimization of product isolation based on hexane extraction yielded 86% isolated product. Biotransformation and extraction were accomplished in a stirred tank reactor equipped with pH and temperature control. The developed process lowered production costs by 80% and enabled (S)‐1‐(2‐chlorophenyl)ethanol production within previously defined economic boundaries. A simple and efficient way to synthesize (S)‐1‐(2‐chlorophenyl)ethanol in an isolated amount of 20 g product per reaction batch was demonstrated. Biotechnol. Bioeng. 2013; 110: 2311–2315. © 2013 Wiley Periodicals, Inc. 相似文献
17.
18.
M. Amine Badri Daniel Rivard Karine Coenen Louis‐Philippe Vaillancourt Charles Goulet Dominique Michaud Professor 《Proteomics》2009,9(2):233-241
We describe a SELDI‐TOF MS procedure for the rapid detection and quantitation of low‐molecular‐weight recombinant proteins expressed in plants. Transgenic lines of potato (Solanum tuberosum L.) expressing the clinically useful protein bovine aprotinin or the cysteine protease inhibitor corn cystatin II were generated by Agrobacterium tumefaciens‐mediated transformation, and then used as test material for the analyses. Real‐time RT‐PCR amplifications and detection of the recombinant proteins by immunoblotting were first conducted for transformed potato lines accumulating the proteins in different cell compartments. Both proteins were found at varying levels in leaves, depending on their final cellular destination and transgene expression rate. These conclusions drawn from standard immunodetection assays were easily confirmed by SELDI‐TOF MS comparative profiling, after immobilizing the leaf proteins of control and transformed lines on protein biochips for weak cationic exchange. This procedure, carried out in less than 2 h, allows for the rapid comparison of recombinant protein levels in transgenic plant lines. The molecular weight of immobilized proteins can also be determined directly from the MS spectra, thus providing a simple way to assess the structural integrity and homogeneity of recombinant proteins in planta, and to identify the most suitable cellular compartments for their heterologous production. 相似文献
19.
Molecular characterization of the β‐amyloid(4‐10) epitope of plaque specific Aβ antibodies by affinity‐mass spectrometry using alanine site mutation 下载免费PDF全文
Raluca Ștefănescu Loredana Lupu Marilena Manea Roxana E. Iacob Michael Przybylski 《Journal of peptide science》2018,24(1)
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy. 相似文献
20.
Imidazole dipeptides can quench toxic 4‐oxo‐2(E)‐nonenal: Molecular mechanism and mass spectrometric characterization of the reaction products 下载免费PDF全文
Imidazole dipeptides, such as carnosine (β‐alanyl‐l ‐histidine) and anserine (β‐alanyl‐Nπ‐methyl‐l ‐histidine), are highly localized in excitable tissues, including skeletal muscle and nervous tissue, and play important roles such as scavenging reactive oxygen species and quenching reactive aldehydes. We have demonstrated several reactions between imidazole dipeptides (namely, carnosine, and anserine) and a lipid peroxide‐derived reactive aldehyde 4‐oxo‐2(E)‐nonenal. Seven carnosine adducts and two anserine adducts were characterized using liquid chromatography/electrospray ionization‐multiple‐stage mass spectrometry. Adduct formation occurred between imidazole dipeptides and 4‐oxo‐2(E)‐nonenal mainly through Michael addition, Schiff base formation, and/or Paal‐Knorr reaction. The reactions were much more complicated than the reaction with a similar lipid peroxide‐derived reactive aldehyde, 4‐hydroxy‐2(E)‐nonenal. 相似文献