首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From cell-ECM interactions to tissue engineering   总被引:6,自引:0,他引:6  
  相似文献   

2.
Statistics from the NHS Blood and Transplant Annual Review show that total organ transplants have increased to 4213 in 2012, while the number of people waiting to receive an organ rose to 7613 that same year. Human donors as the origin of transplanted organs no longer meet the ever-increasing demand, and so interest has shifted to synthetic organ genesis as a form of supply. This focus has given rise to new generation tissue and organ engineering, in the hope of one day designing 3D organs in vitro. While research in this field has been conducted for several decades, leading to the first synthetic trachea transplant in 2011, scaffold design for optimising complex tissue growth is still underexplored and underdeveloped. This is mostly the result of the complexity required in scaffolds, as they need to mimic the cells’ native extracellular matrix. This is an intricate nanostructured environment that provides cells with physical and chemical stimuli for optimum cell attachment, proliferation and differentiation. Carbon nanotubes are a popular addition to synthetic scaffolds and have already begun to revolutionise regenerative medicine. Discovered in 1991, these are traditionally used in various areas of engineering and technology; however, due to their excellent mechanical, chemical and electrical properties their potential is now being explored in areas of drug delivery, in vivo biosensor application and tissue engineering. The incorporation of CNTs into polymer scaffolds displays a variety of structural and chemical enhancements, some of which include: increased scaffold strength and flexibility, improved biocompatibility, reduction in cancerous cell division, induction of angiogenesis, reduced thrombosis, and manipulation of gene expression in developing cells. Moreover CNTs’ tensile properties open doors for dynamic scaffold design, while their thermal and electrical properties provide opportunities for the development of neural, bone and cardiac tissue constructs.  相似文献   

3.
Artificial extracellular matrices play important roles in the regulation of stem cell behavior. To generate materials for tissue engineering, active functional groups, such as amino, carboxyl, and hydroxyl, are often introduced to change the properties of the biomaterial surface. In this study, we chemically modified coverslips to create surfaces with different amino densities and investigated the adhesion, migration, and differentiation of neural stem cells (NSCs) under serum-free culture conditions. We observed that a higher amino density significantly promoted NSCs attachment, enhanced neuronal differentiation and promoted excitatory synapse formation in vitro. These results indicate that the amino density significantly affected the biological behavior of NSCs. Thus, the density and impact of functional groups in extracellular matrices should be considered in the research and development of materials for tissue engineering.  相似文献   

4.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   

5.
Cardiac tissue engineering offers the promise of creating functional tissue replacements for use in the failing heart or for in vitro drug screening. The last decade has seen a great deal of progress in this field with new advances in interdisciplinary areas such as developmental biology, genetic engineering, biomaterials, polymer science, bioreactor engineering, and stem cell biology. We review here a selection of the most recent advances in cardiac tissue engineering, including the classical cell-scaffold approaches, advanced bioreactor designs, cell sheet engineering, whole organ decellularization, stem cell-based approaches, and topographical control of tissue organization and function. We also discuss current challenges in the field, such as maturation of stem cell-derived cardiac patches and vascularization.  相似文献   

6.
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.  相似文献   

7.
Patterned scaffold surfaces provide a platform for highly defined cellular interactions, and have recently taken precedence in tissue engineering. Despite advances in patterning techniques and improved tissue growth, no clinical studies have been conducted for implantation of patterned biomaterials. Four major clinical application fields where patterned materials hold great promise are antimicrobial surfaces, cardiac constructs, neurite outgrowth, and stem cell differentiation. Specific examples include applications of patterned materials to (i) counter infection by antibiotic resistant bacteria, (ii) establish proper alignment and contractile force of regrown cardiac cells for repairing tissue damaged by cardiac infarction, (iii) increase neurite outgrowth for central nervous system wound repair, and (iv) host differentiated stem cells while preventing reversion to a pluripotent state. Moreover, patterned materials offer unique advantages for artificial implants which other constructs cannot. For example, by inducing selective cell adhesion using topographical cues, patterned surfaces present cellular orientation signals that lead to functional tissue architectures. Mechanical stimuli such as modulus, tension, and material roughness are known to influence tissue growth, as are chemical stimuli for cell adhesion. Scaffold surface patterns allow for control of these mechanical and chemical factors. This review identifies research advances in scaffold surface patterning, in light of pressing clinical needs requiring organization of cellular interactions.  相似文献   

8.
Dental stem cells(DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.  相似文献   

9.
Research groups are currently recognising a critical clinical need for innovative approaches to organ failure and agenesis. Allografting, autologous reconstruction and prosthetics are hampered with severe limitations. Pertinently, readily available 'laboratory-grown' organs and implants are becoming a reality. Tissue engineering constructs vary in their design complexity depending on the specific structural and functional demands. Expeditious methods on integrating autologous stem cells onto nanoarchitectured 3D nanocomposites, are being transferred from lab to patients with a number of successful first-in-man experiences. Despite the need for a complete understanding of cell/material interactions tissue engineering is offering a plethora of exciting possibilities in regenerative medicine.  相似文献   

10.
CRF是威胁人类健康及生命的常见病之一,近年来平均每年以约8%的速度在增长。依靠慢性肾功能衰竭肾脏母体及机体的再生潜能在脱细胞基质支架上修复重建肾脏结构与功能,这将是慢性肾功能衰竭治疗的一种全新的途径。而去细胞基质在组织工程、干细胞及再生医学的大量应用为解决组织器官的修复和重建等难题带来了希望。本文就目前CRF的治疗现状及、肾脏组织工程研究前景进行简要综述。  相似文献   

11.
Biocompatible materials for the fabrication of tissue substitutes are crucially important in the advancement of modern medicinal biotechnology. These materials, to serve their function, should be similar in physical, chemical, biological, and structural properties to native tissues which they are aimed to mimic. The porosity of artificial scaffolds is essential for normal nutrient transmission to cells, gas diffusion, and cell attachment and proliferation. Nanoscale inorganic additives and dopants are widely used to improve the functional properties of the polymer materials for tissue engineering. Among these inorganic dopants, halloysite nanotubes are arguably the most perspective candidates because of their biocompatibility and functional properties allowing to enhance significantly the mechanical and chemical stability of tissue engineering scaffolds. Here, this vibrant field of biotechnology for regenerative medicine is overviewed.  相似文献   

12.
《Trends in biotechnology》2023,41(5):604-614
Bioprinting aims to produce 3D structures from which embedded cells can receive mechanical and chemical stimuli that influence their behavior, direct their organization and migration, and promote differentiation, in a similar way to what happens within the native extracellular matrix. However, limited spatial resolution has been a bottleneck for conventional 3D bioprinting approaches. Reproducing fine features at the cellular scale, while maintaining a reasonable printing volume, is necessary to enable the biofabrication of more complex and functional tissue and organ models. In this opinion article we recount the emergence of, and discuss the most promising, high-definition (HD) bioprinting techniques to achieve this goal, discussing which obstacles remain to be overcome, and which applications are envisioned in the tissue engineering field.  相似文献   

13.
For tissue engineering applications, the preparation of biodegradable and biocompatible scaffolds is the most desirable but challenging task.  Among the various fabrication methods, electrospinning is the most attractive one due to its simplicity and versatility. Additionally, electrospun nanofibers mimic the size of natural extracellular matrix ensuring additional support for cell survival and growth. This study showed the viability of the fabrication of long fibers spanning a larger deposit area for a novel biodegradable and biocompatible polymer named poly(glycerol-dodecanoate) (PGD)1 by using a newly designed collector for electrospinning. PGD exhibits unique elastic properties with similar mechanical properties to nerve tissues, thus it is suitable for neural tissue engineering applications. The synthesis and fabrication set-up for making fibrous scaffolding materials was simple, highly reproducible, and inexpensive. In biocompatibility testing, cells derived from mouse embryonic stem cells could adhere to and grow on the electrospun PGD fibers. In summary, this protocol provided a versatile fabrication method for making PGD electrospun fibers to support the growth of mouse embryonic stem cell derived neural lineage cells.  相似文献   

14.
Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.  相似文献   

15.
Applications of regenerative medicine technology may offer new therapies for patients with injuries, end-stage organ failure, or other clinical problems. Currently, patients suffering from diseased and injured organs can be treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and new cases of organ failure increase. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is a rapidly advancing aspect of regenerative medicine as well, and new discoveries here create new options for this type of therapy. For example, therapeutic cloning, in which the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells from the resultant embryo, provides another source of cells for cell-based tissue engineering applications. While stem cells are still in the research phase, some therapies arising from tissue engineering endeavors have already entered the clinical setting, indicating that regenerative medicine holds promise for the future.  相似文献   

16.
Biological pacemakers can be achieved by various gene‐based and cell‐based approaches. Embryonic stem cells (ESCs)‐derived pacemaker cells might be the most promising way to form biological pacemakers, but there are challenges as to how to control the differentiation of ESCs and to overcome the neoplasia, proarrhythmia, or immunogenicity resulting from the use of ESCs. As a potential approach to solve these difficult problems, tissue‐engineering techniques may provide a precise control on the different cell components of multicellular aggregates and the forming of a construct with‐defined architectures and functional properties. The combined interactions between ESC‐derived pacemaker cells, supporting cells, and matrices may completely reproduce pacemaker properties and result in a steady functional unit to induce rhythmic electrical and contractile activities. As ESCs have a high capability for self‐renewal, proliferation, and potential differentiation, we hypothesize that ESCs can be used as a source of pacemaker cells for tissue‐engineering applications and the ambitious goal of biological cardiac pacemakers may ultimately be achieved with ESCs via tissue‐engineering technology.  相似文献   

17.
Tendon–bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon–bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon–bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon–bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow‐derived mesenchymal stem cells (bMSCs) to emerging ACL‐derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon–bone healing. This review describes the current understanding of tendon–bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.  相似文献   

18.
Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology – including embryonic and adult stem cells and induced pluripotent stem cells – clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE‐Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem‐cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour‐related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.  相似文献   

19.
Mesenchymal stem or stromal cells (MSCs) were initially isolated from the bone marrow and received their name on the basis of their ability to differentiate into multiple lineages such as bone, cartilage, fat and muscle. However, more recent studies suggest that MSCs residing in perivascular compartments of the small and large blood vessels play a regulatory function supporting physiologic and pathologic responses of parenchymal cells, which define the functional representation of an organ or tissue. MSCs secrete or express factors that reach neighbouring parenchymal cells via either a paracrine effect or a direct cell‐to‐cell interaction promoting functional activity, survival and proliferation of the parenchymal cells. Previous concept of ‘epithelial–stromal’ interactions can now be widened. Given that MSC can also support hematopoietic, neuronal and other non‐epithelial parenchymal lineages, terms ‘parenchymal–stromal’ or ‘parenchymal–mesenchymal’ interactions may better describe the supportive or ‘trophic’ functions of MSC. Importantly, in many cases, MSCs specifically provide supportive microenvironment for the most primitive stem or progenitor populations and therefore can play a role as ‘stem/progenitor niche’ forming cells. So far, regulatory roles of MSCs have been reported in many tissues. In this review article, we summarize the latest studies that focused on the supportive function of MSC. This thread of research leads to a new perspective on the interactions between parenchymal and mesenchymal cells and justifies a principally novel approach for regenerative medicine based on co‐application of MSC and parenchymal cell for the most efficient tissue repair. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号