首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The last century has witnessed a substantial improvement in yield potential, quality and disease resistance in crops. This was indeed the outcome of conventional breeding, which was achieved with little or no knowledge of underlying physiological and biochemical phenomena related to a trait. Also the resources utilized on programs involving conventional breeding were not of great magnitude. Plant breeders have also been successful during the last century in producing a few salt-tolerant cultivars/lines of some potential crops through conventional breeding, but this again has utilized modest resources. However, this approach seems now inefficient due to a number of reasons, and alternatively, genetic engineering for improving crop salt tolerance is being actively followed these days by the plant scientists, world-over. A large number of transgenic lines with enhanced salt tolerance of different crops can be deciphered from the literature but up to now only a very few field-tested cultivars/lines are known despite the fact that considerable resources have been expended on the sophisticated protocols employed for generating such transgenics. This review analytically compares the achievements made so far in terms of producing salt-tolerant lines/cultivars through conventional breeding or genetic engineering.  相似文献   

3.
As the United States moves toward a plant-based bioeconomy, a large research and development effort is focused on creating new feedstocks to meet biomass demand for biofuels, bioenergy, and specialized bioproducts, such as industrial compounds and biomaterial precursors. Most bioeconomy projections assume the widespread deployment of novel feedstocks developed through the use of modern molecular breeding techniques, but rarely consider the challenges involved with the use of genetically modified crops, which can include hurdles due to regulatory approvals, market adoption, and public acceptance. In this paper we consider the implications of various transgenic crops and traits under development for the bioeconomy that highlight these challenges. We believe that an awareness of the issues in crop and trait selection will allow developers to design crops with maximum stakeholder appeal and with the greatest potential for widespread adoption, while avoiding applications unlikely to meet regulatory approval or gain market and public acceptance. The views presented here are those of the authors and do not necessarily represent the views of the US government.  相似文献   

4.
5.
Due to their versatility and the high biomass yield produced, cultivation of phototrophic organisms is an increasingly important field. In general, open ponds are chosen to do it because of economic reasons; however, this strategy has several drawbacks such as poor control of culture conditions and a considerable risk of contamination. On the other hand, photobioreactors are an attractive choice to perform cultivation of phototrophic organisms, many times in a large scale and an efficient way. Furthermore, photobioreactors are being increasingly used in bioprocesses to obtain valuable chemical products. In this review, we briefly describe different photobioreactor set‐ups, including some of the recent designs, and their characteristics. Additionally, we discuss the current challenges and advantages that each different type of photobioreactor presents, their applicability in biocatalysis and some modern modeling tools that can be applied to further enhance a certain process.  相似文献   

6.
Rowan O Martin 《Ostrich》2018,89(2):139-143
African parrots are among the most traded of all birds listed on the appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Collapses in some wild populations due to trapping for the pet trade have highlighted the threats posed by overexploitation. Although over 3.3 million African parrots have been reported in trade since 1975, virtually no monitoring of exploited populations has taken place and basic ecological data do not exist for the majority of traded species. Greater scrutiny of the wild bird trade in Africa would help ensure the practice is compatible with conservation goals as well as minimise biosecurity risks, including the spread of infectious diseases and the establishment of invasive populations.  相似文献   

7.
Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large‐scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics‐based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on‐going genomic and phenotypic studies will enhance ’omics‐wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.  相似文献   

8.
Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are ubiquitous enzymes that catalyze the breakdown of fats and oils with subsequent release of free fatty acids, diacylglycerols, monoglycerols and glycerol. Besides this, they are also efficient in various reactions such as esterification, transesterification and aminolysis in organic solvents. Therefore, those enzymes are nowadays extensively studied for their potential industrial applications. Examples in the literature are numerous concerning their use in different fields such as resolution of racemic mixtures, synthesis of new surfactants and pharmaceuticals, oils and fats bioconversion and detergency applications. However, the drawbacks of the extensive use of lipases (and biocatalysts in general) compared to classical chemical catalysts can be found in the relatively low stability of enzyme in their native state as well as their prohibitive cost. Consequently, there is a great interest in methods trying to develop competitive biocatalysts for industrial applications by improvement of their catalytic properties such as activity, stability (pH or temperature range) or recycling capacity. Such improvement can be carried out by chemical, physical or genetical modifications of the native enzyme. The present review will survey the different procedures that have been developed to enhance the properties of lipases. It will first focus on the physical modifications of the biocatalysts by adsorption on a carrier material, entrapment or microencapsulation. Chemical modifications and methods such as modification of amino acids residues, covalent coupling to a water-insoluble material, or formation of cross-linked lipase matrix, will also be reviewed. Finally, new and promising methods of lipases modifications by genetic engineering will be discussed.  相似文献   

9.
Traditionally, the oat crop (Avena sativa) has been neglected in a number of respects, cultivated in cropping areas not optimal for wheat, barley or maize. In recent years the interest in oats has increased, particularly because of its dietary benefits and therapeutic potential for human health. The uniqueness and advantages of naked oats over other popular cereals, due to its potentially valuable nutritional composition, have been well studied and reported, opening new market “niches” for oats. Despite the well‐documented benefits, the status of the oat crop is still fragile, due to many reasons. The area cultivated for the oat crop is much less compared with other cereals, and therefore commercial efforts in oat breeding are less. Oat groat yield is lower than other cereals such as wheat and the nutritious uniqueness has not been reflected in agreeable market prices. The same price still exists for both naked and conventional/covered oats in the world grain market. The absence of visible market competitiveness, and some of the oat biological drawbacks, including low grain yield, keeps the oat crop as a lower profitability minor crop. This review is intended to analyse and summarise main achievements and challenges in oat genetics, agronomy and phytopathology to find possible ways of oat improvement and future perspectives for oat breeding.  相似文献   

10.
Abstract The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.  相似文献   

11.
12.
The degree of genetic control and the effects of cultural treatments on somatic embryogenesis (SE) in white spruce were investigated with material derived from six-parent diallel crosses, including reciprocals. Thirty zygotic embryos from both immature and mature cones of each family were cultured in media with either 2,4-D or Picloram immediately after the collection of cones and after 2 months of cold storage. There were significant differences in SE initiation between immature and mature explants, and fresh and cold-stored seeds, but there was no significant differences with culture media effect. Significant variances due to families and to family x treatment interactions were found. The mean percentage of explants that initiated SE in each family ranged from 3.3% to 54.6%, with an overall average of 30.5%. The partitioning of family variance revealed that 21.7% was due to general combining ability effects, 3.5% was due to maternal effects, and 5.5% was due to reciprocal effects, but that the specific combining ability (SCA) was negligible. Variance due to interactions of family x treatments collectively accounted for 32.6%, while the remaining 37.8% of variation was accounted for by random error. However, when comparing the responses obtained with the treatment combinations, the SE response for freshly excised immature embryo explants showed comparatively large SCA variance, whereas the SCA variance was very small in the other treatment combinations.  相似文献   

13.
Genetic controls for growth of embryogenic cultures, storage, maturation treatments, germination and cryopreservation in white spruce somatic embryogenesis (SE) were examined. These SE processes were under genetic control but less strongly so than the initiation phase. For all the SE characters examined, variance due to clones within families was significant and often the largest genetic component of variance. This was further partitioned using an additive-dominance-epistasis model. A relatively-large proportion of the total genetic variance was due to epistatic variance in the maturation and germination of somatic embryos. Embryogenic lines were cryopreserved easily without a distinct genetic influence being noticed.  相似文献   

14.
Despite recent advances in conservation genetics and related disciplines and the growing impact that conservation genetics is having in conservation biology, our knowledge on several key issues in the field is still insufficient. Here we identify some of these issues together with addressing several paradoxes which have to be solved before conservation genetics can face new challenges that are appearing in the transitory phase from the population genetics into the population genomics era. Most of these issues, paradoxes and challenges, like the central dogma of conservation genetics, the computational, theoretical and laboratory experiment achievements and limitations in the conservation genetics field have been discussed. Further knowledge on the consequences of inbreeding and outbreeding depression in wild populations as well as the capacity of small populations to adapt to local environmental conditions is also urgently needed. The integration of experimental, theoretical and applied conservation genetics will contribute to improve our understanding of methodological and applied aspects of conservation genetics.  相似文献   

15.
Agriculture is the primary supplier of food and fibre for humankind and maintaining its sustainability is important. Conventional agriculture (CA) compensates for its unsustainability with external inputs such as fertilisers and pesticides. Organic Agriculture (OA) aims at improving sustainability of the agricultural sector, based on amending soil with organic matter, crop rotation and careful integrated pest management. Mycorrhizae play a major role in the uptake of P and Zn in different crops. It leads to induced resistance against soil-borne and foliar diseases; to improved soil physical characteristics and to better drought and salt stress tolerance, all are important for successful OA in semi-arid conditions. Most of the mycorrhiza-related literature originated from temperate regions. The aims of this review are to highlight the specific potential benefits organically-grown crops can draw from mycorrhizal association under semi-arid conditions; to highlight soil management effects on mycorrhiza under these conditions; to understand the constraints to the use of mycorrhiza in OA under semi-arid conditions and to suggest ways to prevail over these constraints.  相似文献   

16.
Two-dimensional (2D) dwell-time analysis of time series of single-channel patch-clamp current was improved by employing a Hinkley detector for jump detection, introducing a genetic fit algorithm, replacing maximum likelihood by a least square criterion, averaging over a field of 9 or 25 bins in the 2D plane and normalizing per measuring time, not per events. Using simulated time series for the generation of the “theoretical” 2D histograms from assumed Markov models enabled the incorporation of the measured filter response and noise. The effects of these improvements were tested with respect to the temporal resolution, accuracy of the determination of the rate constants of the Markov model, sensitivity to noise and requirement of open time and length of the time series. The 2D fit was better than the classical hidden Markov model (HMM) fit in all tested fields. The temporal resolution of the two most efficient algorithms, the 2D fit and the subsequent HMM/beta fit, enabled the determination of rate constants 10 times faster than the corner frequency of the low-pass filter. The 2D fit was much less sensitive to noise. The requirement of computing time is a problem of the 2D fit (100 times that of the HMM fit) but can now be handled by personal computers. The studies revealed a fringe benefit of 2D analysis: it can reveal the “true” single-channel current when the filter has reduced the apparent current level by averaging over undetected fast gating.  相似文献   

17.
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.  相似文献   

18.
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.  相似文献   

19.
Podophyllotoxin is an aryltetralin lignan synthesized in several plant species, which is used in chemotherapies for cancers and tumor treatment. More potent semisynthetic derivatives of podophyllotoxin such as etoposide and teniposide are being developed and evaluated for their efficacy. To meet the ever increasing pharmaceutical needs, species having podophyllotoxin are uprooted extensively leading to the endangered status of selective species mainly Sinopodophyllum hexandrum. This has necessitated bioprospection of podophyllotoxin from different plant species to escalate the strain on this endangered species. The conventional and non-conventional mode of propagation and bioprospection with the integration of biotechnological interventions could contribute to sustainable supply of podophyllotoxin from the available plant resources. This review article is focused on the understanding of different means of propagation, development of genomic information, and its implications for elucidating podophyllotoxin biosynthesis and metabolic engineering of pathways. In addition, various strategies for sustainable production of this valuable metabolite are also discussed, besides a critical evaluation of future challenges and opportunities for the commercialization of podophyllotoxin.  相似文献   

20.
Metabolic engineering has allowed the production of a diverse number of valuable chemicals using microbial organisms. Many biological challenges for improving bio-production exist which limit performance and slow the commercialization of metabolically engineered systems. Dynamic metabolic engineering is a rapidly developing field that seeks to address these challenges through the design of genetically encoded metabolic control systems which allow cells to autonomously adjust their flux in response to their external and internal metabolic state. This review first discusses theoretical works which provide mechanistic insights and design choices for dynamic control systems including two-stage, continuous, and population behavior control strategies. Next, we summarize molecular mechanisms for various sensors and actuators which enable dynamic metabolic control in microbial systems. Finally, important applications of dynamic control to the production of several metabolite products are highlighted, including fatty acids, aromatics, and terpene compounds. Altogether, this review provides a comprehensive overview of the progress, advances, and prospects in the design of dynamic control systems for improved titer, rate, and yield metrics in metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号