首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the hypothesis was tested that chronic infusion of ANG II attenuates acute volume expansion (VE)-induced inhibition of renal sympathetic nerve activity (SNA). Rats received intravenous infusion of either vehicle or ANG II (12 ng. kg(-1). min(-1)) for 7 days. ANG II-infused animals displayed an increased contribution of SNA to the maintenance of mean arterial pressure (MAP) as indicated by ganglionic blockade, which produced a significantly (P < 0.01) greater decrease in MAP (75 +/- 3 mmHg) than was observed in vehicle-infused (47 +/- 8 mmHg) controls. Rats were then anesthetized, and changes in MAP, mean right atrial pressure (MRAP), heart rate (HR), and renal SNA were recorded in response to right atrial infusion of isotonic saline (20% estimated blood volume in 5 min). Baseline MAP, HR, and hematocrit were not different between groups. Likewise, MAP was unchanged by acute VE in vehicle-infused animals, whereas VE induced a significant bradycardia (P < 0.05) and increase in MRAP (P < 0.05). MAP, MRAP, and HR responses to VE were not statistically different between animals infused with vehicle vs. ANG II. In contrast, VE significantly (P < 0.001) reduced renal SNA by 33.5 +/- 8% in vehicle-infused animals but was without effect on renal SNA in those infused chronically with ANG II. Acutely administered losartan (3 mg/kg iv) restored VE-induced inhibition of renal SNA (P < 0.001) in rats chronically infused with ANG II. In contrast, this treatment had no effect in the vehicle-infused group. Therefore, it appears that chronic infusion of ANG II can attenuate VE-induced renal sympathoinhibition through a mechanism requiring AT(1) receptor activation. The attenuated sympathoinhibitory response to VE in ANG II-infused animals remained after arterial barodenervation and systemic vasopressin V(1) receptor antagonism and appeared to depend on ANG II being chronically increased because ANG II given acutely had no effect on VE-induced renal sympathoinhibition.  相似文献   

2.
Cyclooxygenase 2 (COX2) is involved in regulating renal hemodynamics after renal ablation. It is also known that high protein intake (HPI) leads to a deterioration of renal function when there is preexisting renal disease and that there are important gender differences in the regulation of renal function. This study tested the hypothesis that the role of COX2 in regulating renal function and the renal hemodynamic effects elicited by HPI are enhanced when nephrogenesis is altered during renal development. It was also expected that the role of COX2 and the effects elicited by HPI are age and sex dependent. Newborn Sprague-Dawley rats were treated with an AT(1) ANG II receptor antagonist during the nephrogenic period (ARAnp). Experiments were performed at 3-4 and 10-11 mo of age. Arterial pressure was elevated (P < 0.05) at both ages and in both sexes of ARAnp-treated rats. Renal COX2 expression was only elevated (P < 0.05) at 10-11 mo of age in both sexes of ARAnp-treated rats. COX2 inhibition induced greater renal vasoconstriction in male and female hypertensive than in normotensive rats at both ages. HPI did not induce glomerular filtration rate (GFR) in the youngest hypertensive rats and in the oldest female hypertensive rats. However, the GFR decreased during HPI (0.63 ± 0.07 to 0.19 ± 0.05 ml/min) in the oldest male hypertensive rats. The HPI-induced increment in proteinuria was greater (P < 0.05) in male (99 ± 22 mg/day) than in female (30 ± 8 mg/day) hypertensive rats. These results show that COX2 plays an important role in the regulation of renal function when renal development is altered and that prolonged HPI can lead to a renal insufficiency in males but not in females with reduced nephron endowment.  相似文献   

3.
Fetal uninephrectomy (uni-x) at 100 days of gestation results in compensatory nephrogenesis in the remaining kidney, resulting in a 30% reduction in total nephron number in male sheep. Recently, we showed that uni-x males at 6 mo of age have elevated arterial pressure, reduced renal blood flow (RBF), glomerular filtration rate (GFR), and low plasma renin levels (Singh R, Denton K, Bertram J, Jefferies A, Head G, Lombardo P, Schneider-Kolsky M, Moritz K. J Hypertens 27: 386-396, 2009; Singh R, Denton K, Jefferies A, Bertram J, Moritz K. Clin Sci (Lond) 118: 669-680, 2010). We hypothesized this was due to upregulation of the intrarenal renin-angiotensin system (RAS). In this study, renal responses to ANG II infusion and ANG II type 1 receptor (AT1R) blockade were examined in the same 6-mo-old male sheep. Uni-x animals had reduced levels of renal tissue and plasma renin and ANG II. Renal gene expression of renin, and gene and protein levels of AT1R and AT2R, were significantly lower in uni-x animals. In response to graded ANG II infusion, sham animals had the expected decrease in conscious RBF and GFR. Interestingly, the response was biphasic in uni-x sheep, with GFR initially decreasing, but then increasing at higher ANG II doses (34 ± 7%; P(group × treatment) < 0.001), due to a paradoxical decrease in renal vascular resistance (P(group × treatment) < 0.001). In response to AT1R blockade, while GFR and RBF responded similarly between groups, there was a marked increase in sodium excretion in uni-x compared with sham sheep (209 ± 35 vs. 25 ± 12%; P < 0.001). In conclusion, in 6-mo-old male sheep born with a single kidney, these studies demonstrate that this is a low-renin form of hypertension, in which responses to ANG II are perturbed and the intrarenal RAS is downregulated.  相似文献   

4.
NADPH oxidase has been implicated in ANG II-induced oxidative stress and hypertension in males; however, the contribution of oxidative stress to ANG II hypertension in females is unknown. In the present study, we tested the hypothesis that greater antioxidant capacity in female spontaneously hypertensive rats (SHR) blunts ANG II-induced oxidative stress and hypertension relative to males. Whole body and renal cortical oxidative stress levels were assessed in female and male SHR left untreated or following 2 wk of chronic ANG II infusion. Chronic ANG II infusion increased NADPH oxidase enzymatic activity in the renal cortex of both sexes; however, this increase only reached significance in female SHR. In contrast, male SHR demonstrated a greater increase in all measurements of reactive oxygen species production in response to chronic ANG II infusion. ANG II infusion increased plasma superoxide dismutase activity only in female SHR (76 ± 9 vs. 190 ± 7 Units·ml(-1)·mg(-1), P < 0.05); however, cortical antioxidant capacity was unchanged by ANG II in either sex. To assess the functional implication of alterations in NADPH enzymatic activity and oxidative stress levels following ANG II infusion, additional experiments assessed the ability of the in vivo antioxidant apocynin to modulate ANG II hypertension. Apocynin significantly blunted ANG II hypertension in male SHR (174 ± 2 vs. 151 ± 1 mmHg, P < 0.05), with no effect in females (160 ± 11 vs. 163 ± 10 mmHg). These data suggest that ANG II hypertension in male SHR is more dependent on increases in oxidative stress than in female SHR.  相似文献   

5.
Males develop higher blood pressure than do females. This study tested the hypothesis that androgens enhance responsiveness to ANG II during the development of hypertension in New Zealand genetically hypertensive (NZGH) rats. Male NZGH rats were obtained at 5 wk of age and subjected to sham operation (Sham) or castration (Cas) then studied at three age groups: 6-7, 11-12, and 16-17 wk. Mean arterial blood pressure (MAP), heart rate (HR), and renal blood flow (RBF) measurements were recorded under Inactin anesthesia. These variables were measured after enalapril (1 mg/kg) treatment and during intravenous ANG II infusion (20, 40, and 80 ng/kg/min). Plasma testosterone was measured by ELISA. Angiotensin type 1 (AT1) receptor expression was assessed by Western blot analysis and RT-PCR. ANG II-induced MAP responses were significantly attenuated in Cas NZGH rats. At the highest ANG II dose, MAP increased by 40+/-4% in Sham vs. 22+/-1% in Cas NZGH rats of 16-17 wk of age. Similarly, renal vascular resistance (RVR) responses to ANG II were reduced by castration (209+/-20% in Sham vs. 168+/-10% in Cas NZGH rats at 16-17 wk of age). Castration also reduced MAP recorded in conscious NZGH rats of this age group. Testosterone replacement restored baseline MAP and the pressor and RVR responses to ANG II. Castration reduced testosterone concentrations markedly. Testosterone treatment restored these concentrations. Neither castration nor castration+testosterone treatment affected AT1 receptor mRNA or protein expression. Collectively, these data suggest that androgens modulate renal and systemic vascular responsiveness to ANG II, which may contribute to androgen-induced facilitation of NZGH rat hypertension.  相似文献   

6.
This study examined the effects of renal arterial infusion of a selective cytochrome P-450 epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 2 mg/kg plus 1.5 mg.kg(-1).h(-1)), on renal hemodynamic responses to infusions of [Phe(2),Ile(3),Orn(8)]vasopressin and ANG II into the renal artery of anesthetized rabbits. MS-PPOH did not affect basal renal blood flow (RBF) or cortical or medullary blood flow measured by laser-Doppler flowmetry (CLDF/MLDF). In vehicle-treated rabbits, [Phe(2),Ile(3),Orn(8)]vasopressin (30 ng.kg(-1).min(-1)) reduced MLDF by 62 +/- 7% but CLDF and RBF were unaltered. In MS-PPOH-treated rabbits, RBF and CLDF fell by 51 +/- 8 and 59 +/- 13%, respectively, when [Phe(2),Ile(3),Orn(8)]vasopressin was infused. MS-PPOH had no significant effects on the MLDF response to [Phe(2),Ile(3),Orn(8)]vasopressin (43 +/- 9% reduction). ANG II (20 ng.kg(-1).min(-1)) reduced RBF by 45 +/- 10% and CLDF by 41 +/- 14%, but MLDF was not significantly altered. MS-PPOH did not affect blood flow responses to ANG II. Formation of epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DiHETEs) was 49% lower in homogenates prepared from the renal cortex of MS-PPOH-treated rabbits than from vehicle-treated rabbits. MS-PPOH had no effect on the renal formation of 20-hydroxyeicosatetraenoic acid (20-HETE). Incubation of renal cortical homogenates from untreated rabbits with [Phe(2),Ile(3),Orn(8)]vasopressin (0.2-20 ng/ml) did not affect formation of EETs, DiHETEs, or 20-HETE. These results do not support a role for de novo EET synthesis in modulating renal hemodynamic responses to ANG II. However, EETs appear to selectively oppose V(1)-receptor-mediated vasoconstriction in the renal cortex but not in the medullary circulation and contribute to the relative insensitivity of cortical blood flow to V(1)-receptor activation [corrected].  相似文献   

7.
In addition to the long-term renal complications, previous studies suggested that after acute renal failure (ARF), rats manifest an increased pressor response to an overnight infusion of ANG II. The present study tested whether recovery from ARF results in alterations in sensitivity to the peripheral vasculature. ARF was induced in Sprague-Dawley rats by 45 min of bilateral renal ischemia and reperfusion. Animals were allowed to recover renal structure and function for 5-8 wk, after which the acute pressor responses to ANG II were evaluated either in vivo in in situ skeletal muscle arterioles or in isolated gracilis muscle arteries in vitro. Baseline arterial pressure was not different in ARF rats vs. sham-operated controls, although ARF rats exhibited an enhanced pressor response to bolus ANG II infusion compared with control rats. Steady-state plasma ANG II concentration and plasma renin activity were similar between ARF and control rats. Constrictor reactivity of in situ cremasteric arterioles from ARF rats was enhanced in response to increasing concentrations of ANG II; however, no difference was observed in arteriolar responses to elevated PO2, norepinephrine, acetylcholine, or sodium nitroprusside. Isolated gracilis muscle arteries from ARF rats also showed increased vasoconstriction in response to ANG II but not norepinephrine. In conclusion, recovery from ischemic ARF is not associated with hypertension but is associated with increased arteriolar constrictor reactivity to ANG II. Although the mechanisms of this altered responsiveness are unclear, such changes may relate, in part, to cardiovascular complications in patients with ARF and/or after renal transplant.  相似文献   

8.
The present study examined the effects of ANG II on the renal synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) and its contribution to the renal vasoconstrictor and the acute and chronic pressor effects of ANG II in rats. ANG II (10(-11) to 10(-7) mol/l) reduced the diameter of renal interlobular arteries treated with inhibitors of nitric oxide synthase and cyclooxygenase, lipoxygenase, and epoxygenase by 81 +/- 8%. Subsequent blockade of the synthesis of 20-HETE with 17-octadecynoic acid (1 micromol/l) increased the ED(50) for ANG II-induced constriction by a factor of 15 and diminished the maximal response by 61%. Graded intravenous infusion of ANG II (5-200 ng/min) dose dependently increased mean arterial pressure (MAP) in thiobutylbarbitol-anesthetized rats by 35 mmHg. Acute blockade of the formation of 20-HETE with dibromododecenyl methylsulfimide (DDMS; 10 mg/kg) attenuated the pressor response to ANG II by 40%. An intravenous infusion of ANG II (50 ng. kg(-1). min(-1)) in rats for 5 days increased the formation of 20-HETE and epoxyeicosatrienoic acids (EETs) in renal cortical microsomes by 60 and 400%, respectively, and increased MAP by 78 mmHg. Chronic blockade of the synthesis of 20-HETE with intravenous infusion of DDMS (1 mg. kg(-1). h(-1)) or EETs and 20-HETE with 1-aminobenzotriazole (ABT; 2.2 mg. kg(-1). h(-1)) attenuated the ANG II-induced rise in MAP by 40%. Control urinary excretion of 20-HETE averaged 350 +/- 23 ng/day and increased to 1,020 +/- 105 ng/day in rats infused with ANG II (50 ng. kg(-1). min(-1)) for 5 days. In contrast, urinary excretion of 20-HETE only rose to 400 +/- 40 and 600 +/- 25 ng/day in rats chronically treated with ANG II and ABT or DDMS respectively. These results suggest that acute and chronic elevations in circulating ANG II levels increase the formation of 20-HETE in the kidney and peripheral vasculature and that 20-HETE contributes to the acute and chronic pressor effects of ANG II.  相似文献   

9.
Increased dietary sodium enhances both excitatory and inhibitory blood pressure responses to stimulation of the central sympathetic nervous system (SNS) centers. In addition, long-term (hours to days) administration of ANG II increases blood pressure by activation of the SNS. These studies investigated the effects of increased dietary sodium on SNS control of blood pressure during 0- to 24-h infusion of ANG II in conscious, male rats consuming either tap water or isotonic saline (Iso) for 2 to 3 wk. The SNS component (evaluated by ganglionic blockade with trimetaphan) of both control blood pressure and the pressor response to intravenous ANG II was reduced in Iso animals. Furthermore, although the pressor response to intravenous ANG II infusion was similar between groups, the baroreflex-induced bradycardia during the initial 6 h of ANG II infusion was significantly greater, whereas the tachycardia accompanying longer infusion periods was significantly attenuated in Iso animals. These data suggest that in normal rats increased dietary sodium enhances sympathoinhibitory responses during intravenous ANG II.  相似文献   

10.
There is growing recognition that angiotensin II (ANG II) formed intrarenally exerts direct effects on renal hemodynamics and tubular reabsorption. In vivo micropuncture experiments performed in anesthetized rats have shown that peritubular capillary infusion of either ANG II or angiotensin I (ANG I), at rates that do not markedly influence baseline vascular resistance, can increase proximal tubular reabsorption rate and enhance the responsiveness of the tubuloglomerular feedback mechanism. With higher ANG II or ANG I infusion rates, pronounced preglomerular vasoconstriction occurs, resulting in reduced glomerular capillary pressure and single nephron glomerular filtration rate. The effects of peritubular capillary infusion of ANG I on glomerular function have been shown to be inhibited by the ANG II receptor antagonist, saralasin, indicating that the observed effects of ANG I on proximal tubular reabsorption and glomerular function are not due to direct effects of the decapeptide but are mediated by increases in the interstitial ANG II concentrations resulting from intrarenally generated ANG II. Interestingly, neither peritubular capillary infusion nor systemic administration of large doses of the angiotensin-converting enzyme (ACE) inhibitor, enalaprilat, elicited significant blockade of the single nephron hemodynamic responses to peritubular infusion of ANG I. These findings indicate that intrarenal conversion of ANG I to ANG II occurs, at least in part, at a site which is inaccessible to acutely administered ACE inhibitors, or that there is an alternative pathway for the intrarenal conversion of ANG I to ANG II that is not blocked by ACE inhibitors.  相似文献   

11.
The purpose of this study was to determine the role of endothelin in mediating the renal hemodynamic and arterial pressure changes observed during chronic ANG II-induced hypertension. ANG II (50 ng x kg(-1) x min(-1)) was chronically infused into the jugular vein by miniosmotic pump for 2 wk in male Sprague-Dawley rats with and without endothelin type A (ET(A))-receptor antagonist ABT-627 (5 mg x kg(-1) x day(-1)) pretreatment. Arterial pressure increased in ANG II rats compared with control rats (149 +/- 5 vs. 121 +/- 6 mmHg, P < 0.05, respectively). Renal expression of preproendothelin mRNA was increased by approximately 50% in both the medulla and cortex of ANG II rats. The hypertensive effect of ANG II was completely abolished in rats pretreated with the ET(A)-receptor antagonist (114 +/- 5 mmHg, P < 0.05). Glomerular filtration rate was decreased by 33% in ANG II rats, and this response was attenuated in rats pretreated with ET(A)-receptor antagonist. These data indicate that activation of the renal endothelin system by ANG II may play an important role in mediating chronic renal and hypertensive actions of ANG II.  相似文献   

12.
To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 +/- 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 +/- 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 +/- 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by approximately 50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.  相似文献   

13.
Janus kinase (JAK) 2 is activated by ANG II in vitro and in vivo, and chronic blockade of JAK2 by the JAK2 inhibitor AG-490 has been shown recently to attenuate ANG II hypertension in mice. In this study, AG-490 was infused intravenously in chronically instrumented rats to determine if the blunted hypertension was linked to attenuation of the renal actions of ANG II. In male Sprague-Dawley rats, after a control period, ANG II at 10 ng·kg(-1)·min(-1) was infused intravenously with or without AG-490 at 10 ng·kg(-1)·min(-1) iv for 11 days. ANG II infusion (18 h/day) increased mean arterial pressure from 91 ± 3 to 168 ± 7 mmHg by day 11. That response was attenuated significantly in the ANG II + AG-490 group, with mean arterial pressure increasing only from 92 ± 5 to 127 ± 3 mmHg. ANG II infusion markedly decreased urinary sodium excretion, caused a rapid and sustained decrease in glomerular filtration rate to ~60% of control, and increased renal JAK2 phosphorylation; all these responses were blocked by AG-490. However, chronic AG-490 treatment had no effect on the ability of a separate group of normal rats to maintain normal blood pressure when they were switched rapidly to a low-sodium diet, whereas blood pressure fell dramatically in losartan-treated rats on a low-sodium diet. These data suggest that activation of the JAK/STAT pathway is critical for the development of ANG II-induced hypertension by mediating its effects on renal sodium excretory capability, but the physiological control of blood pressure by ANG II with a low-salt diet does not require JAK2 activation.  相似文献   

14.
Inflammation and immune system dysfunction contributes to the development of cardiovascular and renal disease. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that carries a high risk for both renal and cardiovascular disease. While hemodynamic changes that may contribute to increased cardiovascular risk have been reported in humans and animal models of SLE, renal hemodynamics have not been widely studied. The renin-angiotensin system (RAS) plays a central role in renal hemodynamic control, and although RAS blockade is a common therapeutic strategy, the role of RAS in hemodynamic function during SLE is not clear. This study tested whether mean arterial pressure (MAP) and renal hemodynamic responses to acute infusions of ANG II in anesthetized animals were enhanced in an established female mouse model of SLE (NZBWF1). Baseline MAP was not different between anesthetized SLE and control (NZWLacJ) mice, while renal blood flow (RBF) was significantly lower in mice with SLE. SLE mice exhibited an enhanced pressor response and greater reduction in RBF after ANG II infusion. An acute infusion of the ANG II receptor blocker losartan increased RBF in control mice but not in mice with SLE. Renin and ANG II type 1 receptor expression was significantly lower, and ANG II type 2 receptor expression was increased in the renal cortex from SLE mice compared with controls. These data suggest that there are fewer ANG II receptors in the kidneys from mice with SLE but that the existing receptors exhibit an enhanced sensitivity to ANG II.  相似文献   

15.
To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.  相似文献   

16.
This study tested the hypotheses that renal medullary blood flow (MBF) in spontaneously hypertensive rats (SHR) has enhanced responsiveness to angiotensin (ANG) II and that long-term treatment with enalapril can correct this. MBF, measured by laser Doppler flowmetry in anesthetized rats, was not altered significantly by ANG II in Wistar-Kyoto (WKY) rats, but was reduced dose dependently (25% at 50 ng. kg(-1). min(-1)) in SHR. Infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) into the renal medulla unmasked ANG II sensitivity in WKY rats while L-arginine given into the renal medulla abolished the responses to ANG II in SHR. In 18- to 19-wk-old SHR treated with enalapril (25 mg. kg(-1). day(-1) when 4 to 14 wk old), ANG II did not alter MBF significantly, but sensitivity to ANG II was unmasked after L-NAME was infused into the renal medulla. Endothelium-dependent vasodilation (assessed with aortic rings) was significantly greater in treated SHR when compared with that in control SHR. These results indicate that MBF in SHR is sensitive to low-dose ANG II and suggest that this effect may be due to an impaired counterregulatory effect of nitric oxide. Long-term treatment with enalapril improves endothelium-dependent vascular relaxation and decreases the sensitivity of MBF to ANG II. These effects may be causally related to the persistent antihypertensive action of enalapril in SHR.  相似文献   

17.
ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg(-1)·min(-1)), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI.  相似文献   

18.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

19.
Female growth-restricted offspring are normotensive in adulthood. However, ovariectomy induces a marked increase in mean arterial pressure (MAP) that is abolished by renin angiotensin system (RAS) blockade, suggesting RAS involvement in the etiology of hypertension induced by ovariectomy in adult female growth-restricted offspring. Blockade of the RAS also abolishes hypertension in adult male growth-restricted offspring. Moreover, sensitivity to acute ANG II is enhanced in male growth-restricted offspring. Thus, we hypothesized that an enhanced sensitivity to acute ANG II may contribute to hypertension induced by ovariectomy in female growth-restricted offspring. Female offspring were subjected to ovariectomy (OVX) or sham ovariectomy (intact) at 10 wk of age. Cardio-renal hemodynamic parameters were determined before and after an acute infusion of ANG II (100 ng·kg(-1)·min(-1) for 30 min) at 16 wk of age in female offspring pretreated with enalapril (40 mg·kg(-1)·day(-1) for 7 days). Acute ANG II induced a significant increase in MAP in intact growth-restricted offspring (155 ± 2 mmHg, P < 0.05) relative to intact control (145 ± 4 mmHg). Ovariectomy augmented the pressor response to ANG II in growth-restricted offspring (163 ± 2 mmHg, P < 0.05), with no effect in control (142 ± 2 mmHg). Acute pressor responses to phenylephrine did not differ in growth-restricted offspring relative to control, intact, or ovariectomized. Furthermore, renal hemodynamic responses to acute ANG II were significantly enhanced only in ovariectomized female growth-restricted offspring. Thus, these data suggest that enhanced responsiveness to acute ANG II is programmed by intrauterine growth restriction and that sensitivity to acute ANG II is modulated by ovarian hormones in female growth-restricted offspring.  相似文献   

20.
Augmentation of intrarenal angiotensinogen (AGT) synthesis, secretion, and excretion is associated with the development of hypertension, renal oxidative stress, and tissue injury during ANG II-dependent hypertension. High salt (HS) exacerbates hypertension and kidney injury, but the mechanisms remain unclear. In this study, we determined the consequences of HS intake alone compared with chronic ANG II infusion and combined HS plus ANG II on the stimulation of urinary AGT (uAGT), renal oxidative stress, and renal injury markers. Sprague-Dawley rats were subjected to 1) a normal-salt diet [NS, n = 5]; 2) HS diet [8% NaCl, n = 5]; 3) ANG II infusion in NS rats [ANG II 80 ng/min, n = 5]; 4) ANG II infusion in HS rats [ANG II+HS, n = 5]; and 5) ANG II infusion in HS rats treated with ANG II type 1 receptor blocker (ARB) [ANG II+HS+ARB, n = 5] for 14 days. Rats fed a HS diet alone did not show changes in systolic blood pressure (SBP), proteinuria, cell proliferation, or uAGT excretion although they did exhibit mesangial expansion, collagen deposition, and had increased NADPH oxidase activity accompanied by increased peroxynitrite formation in the kidneys. Compared with ANG II rats, the combination of ANG II infusion and a HS diet led to exacerbation in SBP (175 ± 10 vs. 221 ± 8 mmHg; P < 0.05), proteinuria (46 ± 7 vs. 127 ± 7 mg/day; P < 0.05), and uAGT (1,109 ± 70 vs.. 7,200 ± 614 ng/day; P < 0.05) associated with greater collagen deposition, mesangial expansion, interstitial cell proliferation, and macrophage infiltration. In both ANG II groups, the O(2)(-) levels were increased due to increased NADPH oxidase activity without concomitant increases in peroxynitrite formation. The responses in ANG II rats were prevented or ameliorated by ARB treatment. The results indicate that HS independently stimulates ROS formation, which may synergize with the effect of ANG II to limit peroxynitrite formation, leading to exacerbation of uAGT and greater injury during ANG II salt hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号