首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用定位突变方法对人脑己糖激酶活性位点的研究   总被引:2,自引:0,他引:2  
哺乳动物己糖激酶Ⅰ的分子量是100kD.目前已经认为是由分子量50kD酵母型己糖激酶通过基因复制和融合进化来的.己糖激酶Ⅰ的C端半分子包含了底物葡萄糖的结合位点即催化位点.X射线衍射结构的结果已经推测在酵母型的己糖激酶分子中Ser-158、Asp-211是和葡萄糖的结合及催化活性有关,这些氨基酸残基相当于人脑己糖激酶Ⅰ分子中的Ser-603、Asp-657,它们正好位于该酶分子的C端半分子中.定位突变这两个氨基酸残基得到4个该酶的C端半分子酶(mini-HKⅠ)的突变体,它们是Ser-603→Cys,Ser-603→Thr,Asp-675→Glu,Asp-675→Val.实验结果指出4个突变体酶的Km值变化不大,但酶活性只保留野生型酶的0.28%~11%,园二色谱分析4个突变体的CD谱与野生型酶基本一致,因此说明二级结构没有变化.这些研究结果和X射线衍射结构的推断是一致的,显示了Ser-603和Asp-657氨基酸残基在该酶结合底物葡萄糖或催化作用上起了重要的作用.  相似文献   

2.
Hexokinase able to bind to mitochondria was purified to homogeneity from rat brain by two successive DEAE-cellulose chromatographic steps. The enzyme lost only the binding ability with almost undetectable change in molecular weight on mild chymotrypsin digestion. The bindable hexokinase was adsorbed to a Phenyl-Sepharose column and eluted with a Lubrol PX gradient, whereas non-bindable hexokinase and yeast hexokinase were not adsorbed under the similar conditions. These results suggest that mitochondria-bindable hexokinase has a hydrophobic region on its surface, which is responsible for the specific interaction with mitochondria.  相似文献   

3.
BACKGROUND: Hexokinase I sets the pace of glycolysis in the brain, catalyzing the ATP-dependent phosphorylation of glucose. The catalytic properties of hexokinase I are dependent on product inhibition as well as on the action of phosphate. In vivo, a large fraction of hexokinase I is bound to the mitochondrial outer membrane, where the enzyme adopts a tetrameric assembly. The mitochondrion-bound hexokinase I is believed to optimize the ATP/ADP exchange between glucose phosphorylation and the mitochondrial oxidative phosphorylation reactions. RESULTS: The crystal structure of human hexokinase I has been determined at 2.25 A resolution. The overall structure of the enzyme is in keeping with the closed conformation previously observed in yeast hexokinase. One molecule of the ATP analogue AMP-PNP is bound to each N-terminal domain of the dimeric enzyme in a surface cleft, showing specific interactions with the nucleotide, and localized positive electrostatic potential. The molecular symmetry brings the two bound AMP-PNP molecules, at the centre of two extended surface regions, to a common side of the dimeric hexokinase I molecule. CONCLUSIONS: The binding of AMP-PNP to a protein site separated from the catalytic centre of human hexokinase I can be related to the role played by some nucleotides in dissociating the enzyme from the mitochondrial membrane, and helps in defining the molecular regions of hexokinase I that are expected to be in contact with the mitochondrion. The structural information presented here is in keeping with monoclonal antibody mapping of the free and mitochondrion-bound forms of the enzyme, and with sequence analysis of hexokinases that differ in their mitochondria binding properties.  相似文献   

4.
The N-terminal sequence of rat brain hexokinase (ATP: D-hexose-6-phosphotransferase, EC 2.7.1.1) has been determined to be X-NH-Met-Ile-(Ala, Gln)-Ala-Leu-Leu-Ala-Tyr-, where X is a blocking group on the N-terminal methionine, probably an N-acetyl group. Modification of this hydrophobic N-terminal segment by endogenous proteases in crude brain extracts resulted in loss of the ability to bind to mitochondria, but had no effect on catalytic activity, resulting in the appearance of nonbindable enzyme reported by several previous investigators to be present in purified hexokinase preparations. Similar results can be obtained by deliberate limited digestion with chymotrypsin (cleavage points marked by arrows in sequence above). Both bindable and nonbindable enzyme, the latter generated either by endogenous proteases or with chymotrypsin, have an identical C-terminal dipeptide sequence, Ile-Ala. The great susceptibility of the N-terminus to proteolysis plus the marked effect that its proteolytic modification has on binding of hexokinase to anion exchange or hydrophobic (phenyl-Sepharose) matrices suggest that this N-terminal segment is prominently displayed at the enzyme surface. Epitopes recognized by two monoclonal antibodies which block binding of hexokinase to mitochondria (but have no effect on catalytic activity) have been mapped to a 10K fragment cleaved from the N-terminus by limited tryptic digestion. Thus the binding of hexokinase to mitochondria appears to occur via a "binding domain" constituting the N-terminal region of the molecule, with maintenance of an intact hydrophobic sequence at the extreme N-terminus being critical to this interaction. A resulting specific orientation of the molecule on the mitochondrial surface is considered to be a prerequisite for the observed coupling of hexokinase activity and mitochondrial oxidative phosphorylation.  相似文献   

5.
The complete amino acid sequence of the catalytic domain of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been deduced from the nucleotide sequence of cloned cDNA. Extensive similarity in sequence, taken to indicate similarity in secondary and tertiary structure, is seen between the mammalian enzyme and yeast hexokinase isozymes A and B. All residues critical for binding glucose to the yeast enzyme are conserved in brain hexokinase. A location for the substrate ATP binding site is proposed based on relation of structural features in the yeast enzyme to characteristics commonly observed in other nucleotide binding enzymes; sequences in regions proposed to be important for binding of ATP to the yeast enzyme are highly conserved in brain hexokinase.  相似文献   

6.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

7.
The effect of insulin on the intracellular localization of rat skeletal muscle hexokinase isozyme II (hexokinase II) was studied in vivo. It was found that after injection of the hormone the glucose concentration in the muscle gradually increases in parallel with the hexokinase II redistribution between the cytosol and the mitochondrial fraction in the direction of the bound form of the enzyme. This effect of insulin is due to glucose, an indispensable participant of the complex formation between the enzyme and the mitochondrial membrane. It was shown that the effect of glucose as a hexokinase II adsorbing reagent is a highly specific one. The hexokinase II binding to mitochondria in the presence of glucose is accompanied by changes in some kinetic properties of the enzyme. A kinetic analysis of catalytic efficiency of the free and bound hexokinase II forms revealed that the catalytic efficiency of hexokinase II within the composition of the enzyme-membrane complex exceeds by two orders of magnitude that of the free enzyme. The data obtained are discussed in the framework of an adsorption mechanism of hexokinase activity regulation in the cell.  相似文献   

8.
The binding of glucose to bovine brain hexokinase, isozyme I, exhibited one binding site per 100,000 molecular weight. Glucose-6-P binding was examined in the absence and presence of ATP. ATP and glucose-6-P were shown to compete for the same binding site on the enzyme. A model was proposed to account for these findings and the previously reported data that glucose-6-P and Pi exhibit mutually exclusive, non-cooperative binding to the enzyme. The model shows that brain hexokinase exists in two rapidly interconvertible states, either with or without Pi and that glucose-6-P binding to the phosphate associated enzyme form is relatively very poor. This proposal has been tested kinetically and the data appear to support the suggested model.  相似文献   

9.
L P Solheim  H J Fromm 《Biochemistry》1983,22(9):2234-2239
Kinetic studies were used to investigate the mode of brain hexokinase (EC 2.7.1.1, ATP:D-hexose 6-phosphotransferase) regulation by glucose 6-phosphate (glucose-6-P), ADP, and inorganic phosphate (Pi). A model for regulation of brain hexokinase by glucose-6-P and Pi had been proposed from initial-rate studies and binding experiments [Ellison, W. R., Lueck, J. D., & Fromm, H. J. (1975) J. Biol. Chem. 250, 1864-1871]. The results of the present investigation demonstrate that Pi is an activator of the brain hexokinase reaction when the reaction is studied in the nonphysiological direction. Evidence is presented which indicates that the back-reaction substrates and Pi can bind the enzyme simultaneously, and the suggestion is made that Pi binds to an allosteric site on the enzyme. These findings are in marked contrast to results obtained in the absence of ADP which convincingly demonstrate that glucose-6-P and Pi are mutually exclusive binding ligands for brain hexokinase. The kinetic data can be reconciled with the model for hexokinase regulation within the context of the well-established kinetic mechanism for brain hexokinase.  相似文献   

10.
Hexokinase catalyzes the phosphorylation of glucose and is the first enzyme in glycolysis. To investigate enzyme–ligand interactions in yeast hexokinase isoform PII under physiological conditions, we utilized the technique of Saturation Transfer Difference NMR (STD NMR) to monitor binding modes and binding affinities of different ligands at atomic resolution. These experiments clearly show that hexokinase tolerates several changes at C-2 of its main substrate glucose, whereas epimerization of C-4 significantly reduces ligand binding. Although both glucose anomers bind to yeast hexokinase, the α-form is the preferred form for the phosphorylation reaction. These findings allow mapping of tolerated and prohibited modification sites on the ligand. Furthermore, competitive titration experiments show that mannose has the highest binding affinity of all examined sugars. As several naturally occurring sugars in cells show binding affinities in a similar range, hexokinase may be considered as an ‘emergency enzyme’ in yeast cells. Taken together, our results represent a comprehensive analysis of ligand–enzyme interactions in hexokinase PII and provide a valuable basis for inhibitor design and metabolic engineering.  相似文献   

11.
Hexokinase in mammalian brain is particulate and usually considered to be bound to the outer mitochondrial membrane. Investigation of rabbit brain mitochondria prepared either by differential centrifugation and discontinuous density gradient centrifugation has provided evidence that this particulate fraction also contains endoplasmic vesicles and synaptosomes. Solubilization of the bound hexokinase by different combinations of detergents and metabolites has proved the existence of different hexokinase binding sites. Electron microscopic examination of hexokinase location by immuno-gold labelling techniques confirmed, that hexokinase is indeed predominantly bound to mitochondria but that a significant proportion is also bound to non-mitochondrial membranes. Attempts to quantify this distribution were unsuccessful since different figures were obtained using anti-hexokinase IgG affinity purified on immobilized native or denatured hexokinase. Binding studies of the purified rabbit brain mitochondrial hexokinase to rabbit liver mitochondria and microsomes confirmed that in addition to a binding site on mitochondria there is another binding site on microsomes. The N-terminal sequence of hexokinase has been shown to be important for mitochondria binding and also for microsome binding. These results suggest that the intracellular localization of hexokinase in rabbit brain is not exclusively mitochondrial and that the metabolic role of this enzyme should be reconsidered by including a binding site on the endoplasmic reticulum.  相似文献   

12.
The synthesis and turnover of hexokinase has been measured in Zajdela hepatoma ascites cells labeled for short periods with [35S]methionine. Digitonin fractionation of the labeled cells into a soluble and a membrane fraction showed that only a small part of the newly labeled hexokinase is transferred to mitochondrial binding sites. The soluble enzyme disappears, however, with a half-life of less than 2 h. Glucose had no effect on the stability of the soluble enzyme in intact cells. Our experiments suggest that Zajdela cell hexokinase is synthesized in excess of binding sites and that the excess enzyme is not stable.  相似文献   

13.
In rapidly growing tumor cells exhibiting high glucose catabolic rates, the enzyme hexokinase is markedly elevated and bound in large amounts (50-80% of the total cell activity) to the outer mitochondrial membrane (Arora, K.K., and Pedersen, P.L. (1988) J. Biol. Chem. 263, 17422-17428; Parry, D.M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). In extending these studies, we have isolated a cDNA clone of hexokinase from a lambda gt11 library of the highly glycolytic, c37 mouse hepatoma cell line. This clone, comprising 4,198 base pairs, contains a single open reading frame of 2,754 nucleotides which encode a 918-amino acid hexokinase with a mass of 102,272 daltons. This enzyme exhibits, respectively, 68 and 32 amino acid differences, including several charge differences, from the recently sequenced human kidney and rat brain enzymes. The putative glucose and ATP binding domains present in the latter two enzymes and in rat liver glucokinase are conserved in the tumor enzyme. At its N-terminal region, tumor hexokinase has a 12-amino acid hydrophobic stretch which is present in the rat brain enzyme but absent in the rat liver glucokinase, a cytoplasmic enzyme. The mature tumor hexokinase protein has been overexpressed in active form in Escherichia coli and purified 9-fold. The overexpressed enzyme binds to rat liver mitochondria in the presence of MgCl2. This is the first report describing the cloning and sequencing of a tumor hexokinase, and the first report documenting the overexpression of any hexokinase type in E. coli. Questions pertinent to the enzyme's mechanism, regulation, binding to mitochondria, and its marked elevation in tumor cells can now be addressed.  相似文献   

14.
Our previous studies have shown that one manganous ion binds tightly to bovine hexokinase, with a Kd = 25 +/- 4 microM. The characteristic proton relaxation rate (PRR) enhancement of this binary complex (epsilon b) is 3.5 at 9 MHz and 23 degrees C [Jarori, G.K. Kasturi, S.R., and Kenkare, U.W. (1981) Arch. Biochem. Biophys. 211, 258-268]. On the basis of PRR enhancement patterns, observed on the addition of nucleotides ATP and ADP to this E X Mn binary complex, we now show the formation of a nucleotide-bridge ternary complex, enzyme X nucleotide X Mn. Addition of glucose 6-phosphate to enzyme X ATP X Mn, results in a competitive displacement of ATP Mn from the enzyme. However, a quaternary complex E X ADP X Mn X Glc-6-P appears to be formed when both the products are present. Beta, gamma-Bidentate Cr(III)ATP has been used to elucidate the role of direct binding of Mn(II) in catalysis, and the stoichiometry of metal-ion interaction with the enzyme in the presence of nucleotide. Bidentate Cr(III)ATP serves as a substrate for brain hexokinase without any additional requirement for a divalent cation. However, electron-spin resonance studies on the binding of Mn(II) to the enzyme in the presence of Cr(III)ATP suggest that, in the presence of nucleotide, two metal ions interact with hexokinase, one binding directly to the enzyme and the second interacting via the nucleotide bridge. It is this latter one which participates in catalysis. Experiments carried out with hexokinase spin-labeled with 3-(2-iodo-acetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl clearly showed that the direct-binding Mn site on the enzyme is distinctly located from its ATP Mn binding site.  相似文献   

15.
In its x-ray crystal structures, alpha-1,4-N-acteylhexosaminyltransferase (exostosin-like protein 2 (EXTL2)) forms no direct interaction with the N-acetyl group of the UDP-N-acetylhexosamine. Mutation of the residues that interact with the hydroxyl groups of the donor not only failed to abrogate donor binding but in fact increased binding affinity. Isothermal titration calorimetry is now used to examine the binding nature of various UDP-sugars in H2O and D2O solutions. UDP-N-acetylhexosamines bind to EXTL2 with a high affinity in both solutions, resulting in a relatively large increase of entropy, whereas the weak binding of UDP-galactose and -glucose, which occurred only in D2O solution, only slightly increased entropy. Thus, specific donor binding appears to undergo two distinct steps, beginning with the N-acetyl group expelling water from the donor. enzyme complex into the bulk solvent followed by positioning of the donor into the binding site for the subsequent interactions with the enzyme.  相似文献   

16.
The oxidized form of vitamin C (dehydroascorbic acid, DHA) completely and irreversibly inactivates recombinant human hexokinase type I, in a pseudo-first order fashion. The inactivation reaction occurs without saturation, indicating that DHA does not form a reversible complex with hexokinase. Further characterization of this response revealed that the inactivation does not require oxygen and that dithiothreitol, while able to prevent the DHA-mediated loss of enzyme activity, failed to restore the activity of the DHA-inhibited enzyme. Inactivation was not associated with cleavage of the peptide chain or cross-linking. The decay in enzymatic activity was however both dependent on deprotonation of a residue with an alkaline pKa and associated with covalent binding of DHA to the protein. In addition, inactivation of hexokinase decreased or increased, respectively, in the presence of the substrates glucose or MgATP. Finally, amino acid analysis of the DHA-modified hexokinase revealed a decrease of cysteine residues.Taken together, the above results are consistent with the possibility that covalent binding of the reagent with a thiol group of cysteine is a critical event for the DHA-mediated loss of hexokinase activity.  相似文献   

17.
A comparative study of Mg2+ and Ca2+ effects on the ability of rat skeletal muscle hexokinase isozyme II to bind mitochondrial membranes isolated from the same source was carried out. It was found that the binding ability of the enzyme increases in a similar way in the presence of equimolar amounts of both cations. The dependence of binding ability on cation concentration is hyperbolic, which points to the existence of specific and equivalent metal binding sites during hexokinase attachment to the membranes. Substitution of Ca2+ for Mg2+ does not influence the tightness of the enzyme binding to membranes, which can be evidenced from the type of dependence of the bound hexokinase solubilization degree on KCl concentration in the eluting buffer. The enzyme absorption mediated by various cations is accompanied by corresponding changes in its kinetic properties (V, Km for glucose, Ki for ADP). The role of bivalent cations in the formation of the specific hexokinase-membrane binding is discussed.  相似文献   

18.
Bovine brain hexokinase enhances the effect of Mn(II) on the longitudinal relaxation rate of water protons. Direct interaction of Mn(II) with the enzyme has been studied using electron spin resonance and proton relaxation rate enhancement methods. The results indicate that brain hexokinase has 1.05 ± 0.13 tight binding sites and 7 ± 2 weak binding sites with a dissociation constant, KD = 25 ± 4 μM and KD = 1050 ± 290 μM, respectively, at pH 8.0, 23 °C. The characteristic enhancement ?b) for hexokinase-Mn(II) complex evaluated from proton relaxation rate enhancement studies, gave ?b = 3.5 ± 0.4 for tight binding sites and an average ?b = 2.3 ± 0.5 per site for weak binding sites at 9 MHZ. The dissociation constant of Mn(II) for tight binding sites on the enzyme exhibits strong temperature dependence. In the low-temperature region (5–12 °C) brain hexokinase probably undergoes a conformational change. Frequency dependence of the normalized relaxation rate for bound water at various temperatures has shown that the number of exchangeable water molecules left in the first coordination sphere of bound Mn(II) is about one at 30 °C and about two at 18 °C. Binding of glucose 6-phosphate to hexokinase results in large-line broadening of the resonances of anomeric protons of the sugar. However, no such effect was observed in the case of glucose binding. These results suggest different modes of interaction of these two sugars to hexokinase. Line broadening of the C-(1) hydrogen resonances of glucose caused by Mn(II) in the presence of hexokinase suggests the proximity of the Mn(II) binding site to that of glucose. A lower limit of 1330 ± 170 s?1 for the rate of dissociation of glucose from enzyme-Mn(II)-glucose complex has been obtained from these studies.  相似文献   

19.
Free and bound forms of hexokinase, pyruvate kinase, and lactate dehydrogenase were prepared from the brain of the sea scorpion (Scorpaena porcus) in a low ionic strength medium. Properties of the free and bound forms were compared to determine whether binding to particulate matter could influence enzyme function or stability in vivo. Changes in pH differently affected the activity of the free and bound forms of all three enzymes. Furthermore, bound forms of hexokinase and pyruvate kinase were more stable than the free enzymes to heating at 45 degrees C. Bound hexokinase showed higher affinity for substrates (ATP, glucose) than the free form and bound lactate dehydrogenase had greater affinity for pyruvate and NADH. Although the affinities of the two forms of pyruvate kinase for substrates were similar, Hill coefficients for phosphoenolpyruvate as well as inhibition by ATP differed between the two enzyme forms. Free and bound lactate dehydrogenase also showed differences in Hill coefficients and bound lactate dehydrogenase was less sensitive to substrate inhibition by high pyruvate concentrations. The possible physiological role of the binding of these glycolytic enzymes to subcellular structures is discussed.  相似文献   

20.
MgCl2-induced binding of glucose-6-P solubilized rat brain hexokinase to rat liver mitochondria has been found to be markedly diminished by increasing ionic strength. Using a modified assay of binding ability, it has now been possible to demonstrate that purified preparations of brain hexokinase do retain appreciable ability to bind to mitochondria. A slight modification of the previous DEAE-cellulose chromatography procedure (4), permits resolution of the hexokinase into two major components designated as Type Ib and Type In based on their ability to bind and not bind, respectively, to mitochondria. Ib and In appear to be identical in molecular size and subunit composition, but differ slightly in net charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号