首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kanadaptin (k¯idney anion exchanger adaptor protein) is a widely expressed protein, shown previously to interact with the cytosolic domain of mouse Cl?/HCO3? anion exchanger 1 (kAE1) but not erythroid AE1 (eAE1) by a yeast-two hybrid assay. Kanadaptin was co-localized with kAE1 in intracellular membranes but not at the plasma membrane in α-intercalated cells of rabbit kidney. It was suggested that kanadaptin is an adaptor protein or chaperone involved in targeting kAE1 to the plasma membrane. To test this hypothesis, the interaction of human kanadaptin with human kAE1 was studied in co-transfected HEK293 cells. Human kanadaptin contains 796 amino acids and was immuno-detected as a 90 kDa protein in transfected cells. Pulse-chase experiments showed that it has a half-life (t1/2) of 7 h. Human kanadaptin was localized predominantly to the nucleus, whereas kAE1 was present intracellularly and at the plasma membrane. Trafficking of kAE1 from its site of synthesis in the endoplasmic reticulum to the plasma membrane was unaffected by co-expression of human kanadaptin. Moreover, we found that no interaction between human kanadaptin and kAE1 or eAE1 could be detected in co-transfected cells either by co-immunoprecipitation or by histidine6-tagged co-purification. Taken together, we found that human kanadaptin did not interact with kAE1 and had no effect on trafficking of kAE1 to the plasma membrane in transfected cells. Kanadaptin may not be involved in the biosynthesis and targeting of kAE1. As such, defects in kanadaptin and its interaction with kAE1 are unlikely to be involved in the pathogenesis of the inherited kidney disease, distal renal tubular acidosis (dRTA).  相似文献   

2.
Pang AJ  Bustos SP  Reithmeier RA 《Biochemistry》2008,47(15):4510-4517
Kidney anion exchanger 1 (kAE1) is a membrane glycoprotein expressed in alpha-intercalated cells in the collecting ducts of the kidney where it mediates electroneutral chloride/bicarbonate exchange. Human kAE1 is a truncated form of erythroid AE1 missing the first 65 residues of the N-terminal cytosolic domain, which includes a disordered acidic region (residues 1-54) and the first beta-strand (residues 55-65) of the folded region. Unlike erythroid AE1, kAE1 does not bind deoxyhemoglobin, glycolytic enzymes, or cytoskeletal components. To understand the effect of the N-terminal deletion on the structure of the cytosolic domain, we performed an extensive biophysical analysis on His 6 tagged cytosolic domains of erythroid AE1 (cdAE1), kidney AE1 (cdkAE1), and a novel truncation mutant (cdDelta54AE1) missing the first 54 residues, but retaining the beta-strand. Circular dichroism did not detect any major differences in secondary structure, and sedimentation analyses showed that all three proteins were dimeric. Differential scanning calorimetry revealed that cdAE1 and cdDelta54AE1 had similar thermal stabilities with midpoints of transition higher than cdkAE1. cdAE1 and cdDelta54AE1 underwent similar pH-dependent fluorescence changes, while cdkAE1 exhibited a higher intrinsic fluorescence at neutral and acidic pH. Urea denaturation resulted in dequenching of tryptophan fluorescence in cdAE1, while tryptophans in cdkAE1 were already dequenched in the native state. We conclude that the absence of the central beta-strand in cdkAE1 results in a less stable and more open structure than cdAE1. This structural change, in addition to the loss of the acidic amino-terminal region, may account for the altered protein binding properties of kAE1.  相似文献   

3.
The present study aimed at elucidating the molecular identity of the proposed “I1-imidazoline receptors”, i.e. non-adrenoceptor recognition sites via which the centrally acting imidazolines clonidine and moxonidine mediate a major part of their effects. In radioligand binding experiments with [3H]clonidine and [3H]lysophosphatidic acid on intact, 2-adrenoceptor-deficient PC12 cells, moxonidine, clonidine, lysophosphatidic acid and sphingosine-1-phosphate (S1P) competed for the specific binding sites of both radioligands with similar affinities. RNA interference with the rat S1P1-, S1P2- or S1P3-receptor abolished specific [3H]lysophosphatidic acid binding. [3H]Clonidine binding was markedly decreased by siRNA targeting S1P1- and S1P3-receptors but not by siRNA against S1P2-receptors. Finally, in HEK293 cells transiently expressing human S1P3-receptors, sphingosine-1-phosphate, clonidine and moxonidine induced increases in intracellular calcium concentration, moxonidine being more potent than clonidine; this is in agreement with the known properties of the “I1-imidazoline receptors”.

The present results indicate that the “I1-imidazoline receptors” mediating effects of clonidine and moxonidine in PC12 and the transfected HEK293 cells belong to the S1P-receptor family; in particular, the data obtained in PC12 cells suggest that the I1 imidazoline receptors represent a mixture of S1P1- and S1P3-receptors and/or hetero-dimers of both.  相似文献   


4.
Cha SH  Jung NH  Kim BR  Kim HW  Kwak JO 《IUBMB life》2004,56(4):221-227
The purpose of this study was to confirm protein-protein interaction between cyclooxygenase-1 (COX-1) and caveolins. The interaction of cyclooxygenase-1 and caveolins in the cultured human embryonic kidney (HEK 293) cells was investigated using immuno-precipitation and Western blot analysis. In HEK 293 cells, high levels of caveolin-2 and low level of caveolin-1 at mRNA and protein level were observed without any detectable expression of caveolin-3. Caveolae rich membranous fractions from the HEK 293 cells contained both COX-1 and caveolin-1 or caveolin-2 in same fractions. The experiments of immuno-precipitation showed complex formation between the COX-1 and caveolin-1 or caveolin-2 in the HEK 293 cells. Confocal microscopic results also support co-localization of COX-1 and caveolin-1 or caveolin-2 at the plasma membrane. Co-localization of caveolins with cylooxygenase-1 in caveolae suggested that caveolin would play an important role in regulating the function of COX-1.  相似文献   

5.
6.
Autosomal dominant and recessive distal renal tubular acidosis (dRTA) can be caused by mutations in the anion exchanger 1 (AE1 or SLC4A1) gene, which encodes the erythroid chloride/bicarbonate anion exchanger membrane glycoprotein (eAE1) and a truncated kidney isoform (kAE1). The biosynthesis and trafficking of kAE1 containing a novel recessive missense dRTA mutation (kAE1 S773P) was studied in transiently transfected HEK-293 cells, expressing the mutant alone or in combination with wild-type kAE1 or another recessive mutant, kAE1 G701D. The kAE1 S773P mutant was expressed at a three times lower level than wild-type, had a 2-fold decrease in its half-life, and was targeted for degradation by the proteasome. It could not be detected at the plasma membrane in human embryonic kidney cells and showed predominant endoplasmic reticulum immunolocalization in both human embryonic kidney and LLC-PK1 cells. The oligosaccharide on a kAE1 S773P N-glycosylation mutant (N555) was not processed to the complex form indicating impaired exit from the endoplasmic reticulum. The kAE1 S773P mutant showed decreased binding to an inhibitor affinity resin and increased sensitivity to proteases, suggesting that it was not properly folded. The other recessive dRTA mutant, kAE1 G701D, also exhibited defective trafficking to the plasma membrane. The recessive kAE1 mutants formed dimers like wild-type AE1 and could hetero-oligomerize with wild-type kAE1 or with each other. Hetero-oligomers of wild-type kAE1 with recessive kAE1 S773P or G701D, in contrast to the dominant kAE1 R589H mutant, were delivered to the plasma membrane.  相似文献   

7.
8.
9.
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl/ exchange and the failure of proton (H+) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.  相似文献   

10.
Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.  相似文献   

11.
Coactivator-associated arginine methyl transferase 1 (CARM1) is a protein arginine methyltransferase (PRMT) family member that functions as a coactivator in androgen and estrogen signaling pathways and plays a role in the progression of prostate and breast cancer. CARM1 catalyzes methylation of diverse protein substrates. Prior attempts to purify the full-length mouse CARM1 protein have proven unsatisfactory. The full-length protein expressed in Escherichia coli forms insoluble inclusion bodies that are difficult to denature and refold. The presented results demonstrate the use of a novel HaloTag? technology to purify full-length CARM1 from both E. coli and mammalian HEK293T cells. A small amount of CARM1 was purified from E. coli; however, the protein was truncated on the N-terminus by 10-50 amino acids, most likely due to endogenous proteolytic activity. In contrast, substantial quantities of soluble full-length CARM1 were purified from transiently transfected HEK293T cells. The CARM1 from HEK293T cells was isolated alongside a number of co-purifying interacting proteins. The covalent bond formed between the HaloTag and the HaloLink resin allowed the use of stringent wash conditions without risk of eluting the CARM1 protein. The results also illustrate a highly effective approach for purifying and enriching both CARM1-associated proteins as well as substrates for CARM1's methyltransferase activity.  相似文献   

12.
The interaction between elongation factor 1alpha (EF-1alpha) and alpha/beta-tubulins has been analyzed in vivo and in vitro. An association of both alpha- and beta-tubulins with EF-1alpha in the lysate of Tetrahymena pyriformis was detected by co-immunoprecipitation analysis. In contrast, in vitro biomolecular interaction analysis with glutathione S-transferase (GST) fusion proteins revealed that GST-beta-tubulin, but not GST-alpha-tubulin, can bind to GST-EF-1alpha. Two beta-tubulin binding sites have been identified to reside in the domains I and III of EF-1alpha. In addition, beta-tubulin itself seems to have two distinct interaction sites for each of the domains. Since domain II of EF-1alpha did not interact with beta-tubulin, we have re-evaluated the phylogenetic status of ciliates using EF-1alpha sequences devoid of domain II. The phylogenetic tree thus obtained was significantly different from that inferred from the whole sequence of EF-1alpha, suggesting the presence of functional constraints on the molecular evolution of EF-1alpha.  相似文献   

13.
The present study aimed at elucidating the molecular identity of the proposed “I1-imidazoline receptors”, i.e. non-adrenoceptor recognition sites via which the centrally acting imidazolines clonidine and moxonidine mediate a major part of their effects. In radioligand binding experiments with [3H]clonidine and [3H]lysophosphatidic acid on intact, α2-adrenoceptor-deficient PC12 cells, moxonidine, clonidine, lysophosphatidic acid and sphingosine-1-phosphate (S1P) competed for the specific binding sites of both radioligands with similar affinities. RNA interference with the rat S1P1-, S1P2- or S1P3-receptor abolished specific [3H]lysophosphatidic acid binding. [3H]Clonidine binding was markedly decreased by siRNA targeting S1P1- and S1P3-receptors but not by siRNA against S1P2-receptors. Finally, in HEK293 cells transiently expressing human S1P3-receptors, sphingosine-1-phosphate, clonidine and moxonidine induced increases in intracellular calcium concentration, moxonidine being more potent than clonidine; this is in agreement with the known properties of the “I1-imidazoline receptors”.The present results indicate that the “I1-imidazoline receptors” mediating effects of clonidine and moxonidine in PC12 and the transfected HEK293 cells belong to the S1P-receptor family; in particular, the data obtained in PC12 cells suggest that the I1 imidazoline receptors represent a mixture of S1P1- and S1P3-receptors and/or hetero-dimers of both.  相似文献   

14.
Olfactory receptors (ORs) expressed at the cell surface of olfactory sensory neurons lining the olfactory epithelium are the first actors of events leading to odor perception and recognition. As for other mammalian ORs, few dog OR have been deorphanized, mainly because of the absence of good methodology and the difficulties encountered to express ORs at the cell surface. Within this work, our aim was 1) to deorphanize a large subset of dog OR and 2) to compare the implication of the 2 main pathways, namely the cAMP and inositol 1,4,5-triphosphate (IP3) pathways, in the transduction of the olfactory message. For this, we used 2 independent tests to assess the importance of each of these 2 pathways and analyzed the responses of 47 canine family 6 ORs to a number of aliphatic compounds. We found these ORs globally capable of inducing intracellular calcium elevation through the IP3 pathway as confirmed by the use of specific inhibitors and/or a cAMP increase in response to aldehyde exposure. We showed that the implication of the cAMP or/and IP3 pathway was dependent upon the ligand-receptor combination rather than on one or the other partner. Finally, by exposing OR-expressing cells to the 21 possible pairs of C6-C12 aliphatic aldehydes, we confirmed that some odorant pairs may have an inhibitory or additive effect. Altogether, these results reinforce the notion that odorant receptor subfamilies may constitute functional units and call for a more systematic use of 2 complementary tests interrogating the cAMP and IP3 pathways when deorphanizing ORs.  相似文献   

15.
The neuronal and endothelial isoforms of nitric oxide (NO) synthase (nNOS and eNOS, respectively) both catalyze the production of NO but are regulated differently. Stably transfected HEK 293 cell lines containing nNOS, eNOS, and a soluble mutant of eNOS were therefore established to compare their activity in a common cellular environment. NOS activity was determined by measuring L-[3H]citrulline production in homogenates and intact cells, the conversion of oxyhemoglobin to methemoglobin, and the production of cGMP. The results indicate that nNOS is more active than eNOS, both in unstimulated as well as calcium-stimulated cells. Under basal conditions, the soluble mutant of eNOS appeared to be slightly more active than wild-type eNOS in terms of NO and cGMP formation, suggesting that membrane association may be crucial for inhibition of basal NO release but is not required for stimulation by Ca2+-mobilizing agents. The maximal activity of soluble guanylate cyclase was significantly reduced by transfection with wild-type eNOS due to downregulation of mRNA expression. These results demonstrate that nNOS and eNOS behave differently even in an identical cellular environment.  相似文献   

16.
We have characterized vasoactive intestinal peptide (VIP) receptor/G-protein coupling in rat alveolar macrophage (AM) membranes and find that pertussis toxin treatment and antisera against G(alphai3) and G(alphas) reduce high-affinity (125)I-VIP binding, indicating that both G(alphas) and G(alphai3) couple to the VIP-receptor. The predominant VIP-receptor subtype in AM is VPAC(1) and we examined the G-protein interactions of the human VPAC(1) that had been transfected into HEK293 cells. VPAC(1) has a molecular mass of 56 kDa; GTP analogs reduced (125)I-VIP binding to this protein demonstrating that high-affinity binding of VIP to the receptor requires coupling to G-protein. Functional VIP/VPAC(1)/G-protein complexes were captured by covalent cross-linking and analyzed by Western blotting. The transfected human VPAC(1) receptor in HEK293 was found to be coupled to G(alphas) but not G(alphai) or G(alphaq). Furthermore, pertussis toxin treatment had no effect on VPAC(1)/G-protein coupling in these cells. These observations suggest that the G-proteins activated by VPAC(1) may be dependent upon species and cell type.  相似文献   

17.
ACKR4 also called CCX-CKR, CCRL1 as a member of atypical chemokine receptors, regulates the biological responses by clearance or transporting homeostatic chemokines such as CCL19, CCL21, CCL25, and CXCL13. Since these chemokines are involved in cancer development and metastasis, ACKR4 could have inhibition roles in cancer cell proliferation and invasion. Forming complexes with chemokine receptors by ACKR4 as in the case of hCXCR3 which lead to chemotaxis prevention is the other function of this protein is. However, as an atypical chemokine receptor, ACKR4 is less well-characterized compared to other members. Here, as the first step in understanding the molecular mechanisms of ACKR4 action, transfectants in HEK293T cell, was generated. In this study, ACKR4 coding sequence was cloned and human embryonic kidney 293T cells were used for recombinant production of ACKR4 protein. The liposome-mediated transfection with ACKR4 CDs, were detected in ACKR4 positive cells as early as 48 h post-transfection. The production of ACKR4 protein was confirmed using RT-PCR, dot blot, western blot, and flow cytometry. ACKR4 may represent a novel molecular target in cancer therapy, which might provide a chance for new therapeutic strategy. Therefore, the first step in the understanding of the molecular mechanisms of ACKR4 action is generation ACKR4-HEK293T recombinant cells.  相似文献   

18.
Lin YF  Jan YN  Jan LY 《The EMBO journal》2000,19(5):942-955
ATP-sensitive potassium (K(ATP)) channels regulate insulin secretion, vascular tone, heart rate and neuronal excitability by responding to transmitters as well as the internal metabolic state. K(ATP) channels are composed of four pore-forming alpha-subunits (Kir6.2) and four regulatory beta-subunits, the sulfonylurea receptor (SUR1, SUR2A or SUR2B). Whereas protein kinase A (PKA) phosphorylation of serine 372 of Kir6.2 has been shown biochemically by others, we found that the phosphorylation of T224 rather than S372 of Kir6.2 underlies the catalytic subunits of PKA (c-PKA)- and the D1 dopamine receptor-mediated stimulation of K(ATP) channels expressed in HEK293 cells. Specific changes in the kinetic properties of channels treated with c-PKA, as revealed by single-channel analysis, were mimicked by aspartate substitution of T224. The T224D mutation also reduced the sensitivity to ATP inhibition. Alteration of channel gating and a decrease in the apparent affinity for ATP inhibition thus underlie the positive regulation of K(ATP) channels by PKA phosphorylation of T224 in Kir6.2, which may represent a general mechanism for K(ATP) channel regulation in different tissues.  相似文献   

19.
20.
H Cinar  E M Barnes 《Biochemistry》2001,40(46):14030-14036
The endocytosis of GABA(A) receptors was investigated in HEK 293 cells expressing receptor alpha1beta2- and alpha1beta2gamma2-subunit combinations. For assessment of internalized receptors by radioimmunoassay or immunofluorescence, a triple c-myc epitope was introduced into the amino terminus of the beta2 subunit. An assay based on biotin inaccessibility was used for alpha1 subunits. GABA(A) alpha1beta2- and alpha1beta2gamma2-subunit receptors were internalized with a t(1/2) of 5.5 min at 37 degrees C. With both subunit combinations, phorbol 12-myristate 3-acetate enhanced internalization by nearly 100%. Treatment of the cells with hypertonic sucrose prevented both the basal and phorbol ester-induced endocytosis of GABA(A) receptors. GF 109203X, an inhibitor of protein kinase C, blocked the stimulation by phorbol ester but had no detectable effect on basal receptor endocytosis. Coexpression with a dominant-negative mutant of dynamin (K44A) led to a 100% enhancement of GABA(A) receptor internalization, while the endocytosis of beta(2)-adrenergic receptors was completely prevented. The results indicate that the endocytosis of GABA(A) alpha1beta2-subunit receptors in HEK cells is constitutive, positively modulated by activation of protein kinase C, and occurs by a mechanism that requires neither the participation of a GABA(A) receptor gamma2 subunit nor a clathrin-mediated pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号