首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heart cells were cultured from newborn rats, and the contractile activity (CA) and beating frequency (BF) were recorded using an electrooptical technique. Myocardial cells were found to be highly sensitive to Prostacyclin (PGI2) since a 10(-11) M concentration increased the BF and CA. Increasing the concentration (2.7 x 10(-10) to 2.7 x 10(-8) M) resulted in a dose-dependent decrease in CA and BF. The stable product of the non-enzymatic degradation of PGI2 (6 Keto PGF1 alpha) was found to be completely ineffective, and the stable product of the enzymatic PGI2 metabolism (6 Keto PGE1) exerted only a dose-dependent (10(-6) to 10(-5) M) positive inotropic effect. PGI2 was also effective in the presence of serum instead of culture medium but the decrease in CA was less marked than in culture medium, probably due to protein-binding of the drug. When the CA was decreased by PGI2, perfusion with the intracellular calcium-releasing and phosphodiesterase inhibiting agent, caffeine, reversed the PGI2-induced negative inotropic effect. These results suggest that PGI2 participates in the regulation of the heart cell contractility. Its metabolite 6 Keto PGEI could also influence heart cell contractility but higher concentrations are needed. Moreover myocardial intracellular calcium availability seems to be influenced by PGI2.  相似文献   

3.
We tested the hypothesis that nitric oxide has a positive inotropic effect on mammalian cardiac muscle contractility and that this effect sums with the positive inotropic effect of beta1-adrenergic agonists when both are present. Feline right ventricular papillary muscles were stimulated to contract isometrically at 0.2 Hz in Krebs-Henseleit bicarbonate buffer (KREBS) gassed with 95% O2 and 5% CO2 (26 degrees C; pH 7.34). The nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine (SNAP, 10(-5) M), and the membrane permeable cGMP analog 8-bromoguanosine-3',5'-cyclophosphate sodium (Br-cGMP, 10(-5) M), significantly increased developed force by 13.3+/-1.5% (n = 11) and 7.8+/-2.8% (n = 7), respectively. SNAP, at 10(-5) M, significantly increased the force developed by papillary muscle treated with 10(-11) M or 10(-9) M dobutamine hydrochloride (a beta1-adrenergic agonist) (n = 25, 11.3+/-2.9% and 10.0+/-3.6%, respectively) when compared with the addition of KREBS (n = 27, 2.6+/-0.9% and 5.5+/-0.9%), but the increase was less than predicted by the sum of inotropic effects of SNAP and dobutamine. SNAP at 10(-5) M did not change developed force in muscles treated with 10(-7) M dobutamine but it significantly decreased developed force in muscles challenged with 10(-5) M dobutamine (n = 18, 29.3+/-5.0%) when compared with KREBS (n = 10, 41.5+/-6.8%). Similarly, 10(-4) M 8-bromo-adenosine cyclic 3',5'-hydrogen phosphate monosodium (a membrane permeable cAMP analog) increased developed force 14.9+/-3.3% and the addition of 10(-5) M Br-cGMP to those muscles significantly reduced developed force by 3.5%+/-1.1% (n = 7). Thus, the positive inotropic effect of NO decreased and ultimately became an attenuation as the level of beta1-adrenergic stimulation increased due at least in part, to an interaction between the cAMP and cGMP second messenger pathways.  相似文献   

4.
The podocytes are highly differentiated cells playing a key role in glomerular filtration. Vasoactive factors including angiotensin II (Ang II) and cyclic guanosine 5' monophosphate (cGMP) are synthesized by these cells upon stimulation as well as in the basal state. In this study we have tested whether angiotensin II affects the total synthesis of cGMP in primary culture of rat podocytes. The cells were stimulated with atrial natriuretic peptide (ANP) and/or a nitric oxide (NO) donor, S-nitroso-N-acetyl penicillamine (SNAP), in the absence or presence of Ang II. The cGMP synthesis was determined by radioimmunoassay (RIA). ANP or SNAP alone increased the cGMP synthesis in podocytes although the effects were not additive unless Ang II was present in the medium. Ang II suppressed the ANP-dependent cGMP synthesis whereas SNAP-dependent cGMP production remained unaffected. These effects were prevented by a non-specific antagonist of Ang II receptors (AT), saralasin. Adversely, PD123319, a specific inhibitor of AT2 receptors, augmented inhibition of ANP-dependent and enhanced the NO-dependent cGMP production. Probenecid, an inhibitor of cGMP extrusion from the cells, suppressed the cGMP generation by both ANP and SNAP. We conclude that cGMP synthesis in cultured podocytes is modulated by angiotensin II and that two adversely acting receptors, AT1 and AT2 are involved in this effect. Additionally, production of cGMP might be intrinsically inhibited by cGMP accumulating inside the cells.  相似文献   

5.
Results of previous studies indicated that insulin at levels comparable to those in humans during hyperinsulinemia decreased ACTH-stimulated cortisol and androstenedione secretion by bovine adrenal fasciculata-reticularis cells in primary culture. In the present studies this inhibitory action was examined further by comparing the effects of insulin on ACTH-stimulated corticosteroid secretion with its effects on 8-(4-chlorophenylthio)-cAMP (cpt-cAMP), forskolin- and [5val]angiotensin II (Ang II)-stimulated corticosteroid secretion. Effects on corticosteroid secretion were correlated with effects on cAMP accumulation and rates of cAMP production. Monolayers were incubated for 24 h in the absence or presence of each agonist alone or in combination with insulin. Insulin (1.7 x 10(-9) or 17.5 x 10(-9) M) caused about a 50% decrease in cortisol and androstenedione secretion in response to ACTH (10(-11) or 10(-8) M). Insulin also decreased ACTH-stimulated aldosterone secretion by cultured glomerulosa cells. Cpt-cAMP (10(-4) or 10(-3) M)-stimulated increases in cortisol and androstenedione secretion were inhibited by insulin, but to a lesser extent than those in response to ACTH. The inhibition of cpt-cAMP-stimulated steroid secretion was not related to increased degradation of the cyclic nucleotide. Increases in cortisol and androstenedione secretion caused by a submaximal concentration (10(-6) M) of forskolin were decreased 50-70% by insulin. In contrast, insulin failed to significantly affect cortisol or androstenedione secretion caused by a maximal concentration (10(-5) M) of forskolin. The secretory responses to Ang II (10(-8) M) were also unaffected by insulin. The effect of insulin to inhibit ACTH-stimulated steroid secretion was accompanied by a reduction in cAMP accumulation as well as an apparent inhibition of adenylate cyclase activation. These data indicate that the effect of insulin to attenuate ACTH-stimulated corticosteroid secretion results from both an inhibition of ACTH-stimulated adenylate cyclase activity and an antagonism of the intracellular actions of cAMP.  相似文献   

6.
H Yoshida  M Nakamura 《Life sciences》1992,50(22):PL195-PL200
We conducted a study to determine whether angiotensin converting enzyme inhibitors (ACEIs) inhibit endothelin secretion from cultured human endothelial cells. Confluent umbilical vein endothelial cells were incubated in multi-well plates with culture medium containing either captopril (10(-6), 10(-5), 10(-4) M) or enalaprilat (10(-7), 10(-6), 10(-5) M) for 6 hours. Immunoreactive endothelin in the medium was measured by radioimmunoassay. Calf serum (CS) stimulated endothelin release in a concentration-dependent manner, and both ACEIs inhibited 5% CS-stimulated endothelin release in a concentration-dependent manner. To explore the mechanisms of ACEI-induced suppression of endothelin release, the effects of angiotensin II (10(-8), 10(-7), 10(-6) M), angiotensin converting enzyme (0.1, 1, 10 mU/ml), bradykinin (10(-8), 10(-7), 10(-6) M), and sodium nitroprusside (10(-6), 10(-5), 10(-4) M) on endothelin release were also examined. Although angiotensin II and angiotensin converting enzyme had no significant effect on endothelin release, concentration-dependent suppression occurred with bradykinin and sodium nitroprusside. These results indicate that ACEIs inhibit the stimulated release of endothelin from human endothelial cells, and provide indirect evidence that ACEI-induced ET suppression may be mediated via potentiation of autacoid formation from the cells.  相似文献   

7.
Isolated perfused rat hearts were used to compare the effects of the synthetic neuropeptide Y (NPY) and 4-norleucine-NPY on cardiac function. Each peptide exhibited both negative inotropic and chronotropic effects, and also caused coronary vasoconstriction leading to a reduction in coronary flow. A comparison of the IC50 values from dose-response curves using 10(-14) to 10(-7) M peptides (IC50 is the peptide concentration that produced a 50% decrease of the maximal effect) indicated that NPY was more potent as inhibitor of contractility and less potently inhibited coronary flow and heart rate, whereas 4-norleucine-NPY had more inhibitory influence on coronary flow and heart rate and less on cardiac contractility. This difference in potencies suggests that the inhibitory effects of NPY on contractility, coronary flow and heart rate may be independent of each other. Since NPY also decreased the contractile force of isolated left atrial and right ventricular strips of the rat heart, the coronary flow decrease cannot be the cause of the negative inotropy of isolated heart. Pretreatment of atrial and ventricular strips with NPY did not influence the positive inotropic effect produced by the cardiac glycoside ouabain indicating that sarcolemmal Na+, K+-ATPase was not involved in the inhibitory inotropic effect of NPY. Further studies towards elucidating the mechanism of the negative inotropy of cardiac muscles using isolated heart mitochondria revealed that NPY uncoupled oxidative phosphorylation and blocked mitochondrial calcium uptake; the former event fosters negative inotropy. Since these effects on mitochondria occurred at concentrations 100-fold higher than those required for negative inotropy, the two effects of NPY may not be related.  相似文献   

8.
To assess the effect of angiotensin II (A II) on the secretion of human adrenal androgens (AA), plasma dehydroepiandrosterone (DHEA), DHEA sulfate (DS) and delta 4-androstenedione (delta 4-A) were measured in eight normal men 60 and 120 min after stimulation of endogenous A II by a bolus injection of 40 mg frusemide, and the direct effect of A II on the secretion of adrenal androgens was examined in cultured human adrenocortical cells in the presence of a low concentration of ACTH. The administration of frusemide led to a significant increase in the plasma DHEA and DS concentration as well as plasma renin activity (PRA) and aldosterone concentration (PAC), but did not change plasma cortisol and delta 4-A. In the culture of human adrenocortical cells, 10(-9)-10(-5) M A II or 10(-13) M ACTH alone did not stimulate the secretion of DHEA, DS and delta 4-A, while 10(-7) and 10(-5) M A II in the presence of 10(-13) M ACTH caused a significant increase in DHEA and DS secretion with no change in delta 4-A. These results suggest that the activated renin-angiotensin system stimulates the secretion of adrenal androgens by a direct effect of A II on adrenal cortical cells.  相似文献   

9.
Recent evidence suggests that vasoconstrictive substances, including angiotensin II (Ang II), may function as a vascular smooth muscle growth promoting substance and may contribute to vascular hypertrophy in hypertension. Atrial natriuretic polypeptide (ANP) is known to be a physiological antagonist to Ang II in blood pressure and fluid homeostasis. Moreover, we have demonstrated that ANP can attenuate Ang II's action on vascular hypertrophy. In this study, we investigated the potential molecular mechanisms for the interaction of ANP and Ang II on vascular cell growth. Ang II dose-dependently induced RNA synthesis in post confluent cultured rat aortic smooth muscle (RASM) cells. ANP (10(-7) M) inhibited the hypertrophic effect of Ang II at the concentration of 10(-10) - 10(-8) M) but exerted no effect on the action of higher doses (10(-7) - 10(-6) M) of Ang II. Ang II (10(9) - 10(-8) M) and a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA, 10(-8) M) rapidly induced c-fos as well as c-Jun and Jun-B mRNA expression in RASM cells. ANP (10(-7) M) itself had no apparent effect on the expression of these protooncogenes. Furthermore, ANP did not inhibit the induction of these protooncogenes by Ang II or PMA. Paradoxically, ANP (10(-7) M) significantly enhanced c-fos mRNA expression induced by Ang II and PMA. However, the chloramphenicol acetyl transferase (CAT) assay using a CAT expression vector containing the AP-1 binding element showed that ANP had no effect on the basal and PMA-stimulated AP-1 activity in transfected RASM cells. We conclude, therefore, that the inhibitory effect of ANP on the growth of vascular smooth muscle cells in vitro does not occur through the regulation of these protooncogene expressions.  相似文献   

10.
Adrenomedullin (AM) (10(-8) M) partially suppressed aldosterone response of dispersed rat zona glomerulosa (ZG) cells to 10 mM K+, and the nitric oxide (NO) synthase inhibitors L-NAME (10(-3) M) and 1400W (10(-4) M) effectively counteracted this effect of AM. The NO donor L-Arginine (L-Arg) (10(-5) M) decreased both basal and K+ -stimulated aldosterone secretion. The guanylate-cyclase inhibitor Ly-83583, at a concentration (10(-4) M) abolishing either the guanylate-cyclase activator guanylin- or L-Arg-induced cGMP release from dispersed ZG cells, did not affect the aldosterone antisecretagogue action of AM and L-Arg. AM (10(-8) M) evoked a moderate increase in cGMP release by dispersed ZG cells, and the effect was blocked by both 10(-4) M Ly-83583 and 10(-3) M L-NAME. Collectively, these findings allow us (1) to confirm that NO inhibits aldosterone secretion through a cGMP-independent mechanism; and (2) to suggest that stimulation of endogenous NO synthesis plays a role in the mechanisms underlying the inhibitory effect of AM on K+ -stimulated aldosterone secretion from rat ZG cells.  相似文献   

11.
Methacholine, atrial natriuretic peptide (ANP), nitroprusside (nitric oxide), angiotensin II, and bradykinin raised cyclic GMP (cGMP) levels in cultured bovine adrenal chromaffin cells. The role of cGMP in secretion from chromaffin cells was examined using 8-bromo-cGMP. This analogue had no effect on basal secretion or secretion due to angiotensin II, bradykinin, or a high K+ level but potentiated secretion due to low doses of nicotine. At supramaximal doses of nicotine, 8-bromo-cGMP inhibited secretion. These effects of 8-bromo-cGMP were not due to changes in the nicotine-induced rise in cytosolic calcium concentration. A potentiation of secretion due to low doses of nicotine was also found following simultaneous addition of ANP or nitroprusside, a result suggesting that ANP and nitric oxide (endothelium-derived relaxing factor) could be important regulators of secretion from adrenal chromaffin cells.  相似文献   

12.
Bovine adrenal cells were isolated from the subcapsular region of the gland to obtain cultures enriched in cells of the zona glomerulosa. The cells kept in primary cultures were shown to respond to angiotensin II and adrenocorticorticotropin (ACTH) by a significant increase in aldosterone production. These primary adrenal cultures were used to study the effect of angiotensin II on LDL metabolism. Addition of angiotensin II for 48 h to the culture medium resulted in a 200-300% increase in LDL metabolism, and the lowest effective concentration was 10(-8) -10(-9) M. The angiotensin II effect became evident after 12-16 h of incubation. To compare the metabolism of the 125I-labeled protein moiety to that of cholesteryl ester of LDL, the lipoprotein was labeled also with cholesteryl linoleyl ether, a nonhydrolyzable analog of cholesteryl ester. Under basal conditions and in the presence of angiotensin II or ACTH the ratio of [3H]cholesteryl linoleyl ether to 125I indicate some preferential uptake of the cholesteryl ester moiety. Stimulation of specific LDL binding at 4 degrees C and LDL metabolism at 37 degrees C by 10(-7) M angiotensin II occurred at all concentrations of LDL studied. Linearization of the kinetic data showed that angiotensin II increased the LDL receptor number significantly but not the affinity of the LDL receptor for its ligand. The present findings indicate that in analogy to ACTH, angiotensin II can influence receptor-mediated uptake of LDL by adrenal cortical cells. It remains to be shown whether the angiotensin II effect on LDL metabolism is limited to adrenal cells or will affect other cells which express the angiotensin II receptor.  相似文献   

13.
Both angiotensin II and adrenocorticotropic hormone (ACTH) are well known to play a crucial role on the regulation of aldosterone production in adrenal glomerulosa cells. Recent observations suggest that the steroidogenic action of ACTH is mediated via the cAMP messenger system, whereas angiotensin II acts mainly through the phosphoinositide pathway. However, there have been no reports concerning the interaction between the cAMP messenger system activated by ACTH and the Ca2+ messenger system induced by angiotensin II. Both ACTH and angiotensin II simultaneously act on adrenal cells for regulating steroidogenesis under physiological conditions. Thus the present experiments were performed to examine the effect of ACTH on the action of angiotensin II by measuring angiotensin II receptor activity, cytosolic Ca2+ movement, and aldosterone production. The major findings of the present study are that short-term exposure to a high dose of ACTH (10(-7) M) inhibited 125I-angiotensin II binding to bovine adrenal glomerulosa cells, decreased the initial spike phase of [Ca2+]i induced by angiotensin II, and inhibition of angiotensin II-induced aldosterone production. Low dose of ACTH (10(-10) M), which did not increase cAMP formation, did not affect angiotensin II receptor activity. These studies have shown that angiotensin II receptors of bovine adrenal glomerulosa cells can be down-regulated by 1 mM dibutyryl cyclic AMP, as well as by effectors which are able to activate cAMP formation (10(-7) M ACTH and 10(-5) M forskolin). The rapid decrease in angiotensin II receptors induced by 10(-7)M ACTH was associated with a decreased steroidogenic responsiveness and a decreased rise in the [Ca2+]i response induced by angiotensin II. These studies show that the cAMP-dependent processes activated by ACTH have the capacity to interfere with signal transduction mechanisms initiated by receptors for angiotensin II.  相似文献   

14.
We evaluated the relationship between cell pH and cGMP production in cultured rat renal inner medullary collecting duct cells. The cGMP level, 21 +/- 6, was not different in control vs. alkalinized cells, 49 +/- 17 fmol/mg protein (p greater than 0.5). 10(-11) M atrial natriuretic peptide (ANF) enhanced cGMP production in alkalinized cells, 426 +/- 34 vs. 141 +/- 9*. Conversely, alkalinization inhibited 10(-4)M nitroprusside (SNP) induced cGMP formation, 29 +/- 9 vs. 332 +/- 67*. Phosphodiesterase inhibition abolished the difference in cGMP production by ANF but did not reverse the inhibitory effect of alkalinization on SNP induced cGMP production. In rat renal inner medullary collecting duct cells, cellular alkalinization plays a significant role in the regulation of guanylate cyclase mediated cGMP production. * = p less than 0.05).  相似文献   

15.
Impaired cellular cholesterol efflux in cells of the arterial wall is suggested to be involved in the pathogenesis of atherosclerosis. Since angiotensin II (Ang-II) is implicated in the development of atherosclerosis, the aim of the present study was to determine whether Ang-II could affect macrophage cholesterol efflux. Incubation of increasing concentrations of Ang-II (10(-10)-10(-7) M) with mouse peritoneal macrophages that were prelabeled with [3H]cholesterol led to a significant decrease in HDL-induced macrophage cholesterol efflux, by up to 70% compared to control cells incubated without Ang-II. Ang-II specifically increased the plasma membrane unesterified cholesterol content, the substrate for HDL-induced cholesterol efflux. The inhibitory effect of Ang-II on macrophage cholesterol efflux was found to be mediated by the angiotensin II type 1 (AT-1) receptor, since addition of the AT-1 antagonist Losartan completely blocked the inhibitory effect of Ang-II on the macrophage cholesterol efflux. We thus conclude that Ang-II atherogenicity may be related, at least in part, to its inhibitory effect on macrophage cholesterol efflux, thus leading to cellular cholesterol accumulation, the hallmark of early atherogenesis.  相似文献   

16.
Abstract: Recent studies have suggested a role for an inhibitory guanine nucleotide binding (Gi) protein and protein (serine/threonine) phosphatase 2A (PP2A) in the angiotensin II type 2 (AT2) receptor-mediated stimulation of neuronal K+ currents. In the present study we have directly analyzed the effects of angiotensin II on PP2A activity in neurons cultured from newborn rat hypothalamus and brainstem. Angiotensin II elicited time (30 min–24 h)- and concentration (10 n M -1 µ M )-dependent increases in PP2A activity in these cells, an effect mimicked by the AT2 receptor ligand CGP-42112A. These effects of angiotensin II and CGP-42112A involve AT2 receptors, because they were inhibited by the AT2 receptor-selective ligand PD 123,319 (1 µ M ) but not by the angiotensin II type 1 receptor antagonist losartan (1 µ M ). Furthermore, the stimulatory effects of angiotensin II and CGP-42112A on PP2A activity were inhibited by pretreatment of cultures with pertussis toxin (200 ng/ml; 24 h), indicating the involvement of a Gi protein. These effects of angiotensin II and CGP-42112A appear to be via activation of PP2A, and western blot analyses revealed no effects of either peptide on the protein levels of the catalytic subunit of PP2A in cultured neurons. In summary, these data suggest that PP2A is a cellular target modified following neuronal AT2 receptor activation.  相似文献   

17.
The contractile system of rat cardiac muscle that has been made hyperpermeable by soaking the tissue in EGTA (McClellan and Winegrad. 1978. J. Gen. Physiol. 72:737-764) can be probed directly with Ca buffer from the bathing solution without significant interference from either sarcoplasmic reticulum or mitochondria on the Ca concentration. Changes in Ca-activated force are due therefore to changes in the properties of the contractile system itself and not to regulation of Ca concentration. The addition of cAMP, cGMP, and GTP, guanylyl imidodiphosphate (GMP-PNP), or epinephrine to the bath does not alter maximum Ca-activated force, but when these drugs are added with 1% nonionic detergent to the bath, contractility increases by as much as 180%. An inhibitor of phosphodiesterase must be present for the inotropic effect of cAMP but not cGMP, GTP, GMP-PNP, or epinephrine. The inotropic response to cAMP is independent of the Ca sensitivity of the contractile system, but guanine nucleotides enhance contractility only when Ca sensitivity is not high. The inotropic effect of epinephrine is inhibited to a large extent by cGMP but not by GMP-PNP. These data can be explained by a model in which contractility is enhanced by a cAMP-regulated phosphorylation that can be controlled through the beta-receptor adenylate cyclase complex in the sarcolemma. The regulation involves two reactions, one a phosphorylation and a second that occurs in the presence of detergent. Phosphorylation of neither the myosin light chain nor the inhibitory subunit of troponin appears to be involved in this mechanism for regulating contractility.  相似文献   

18.
We have found that atrial natriuretic factor (ANF) has a profound effect on testicular cells in altering intracellular cyclic nucleotide levels as well as progesterone secretion. Using clonal cultured Leydig tumor cells we found that 1 X 10(-8)M ANF caused a two thousand-fold elevation in the accumulation of cellular cGMP and inhibited cAMP in treated cells by more than 90% as compared to the controls. ANF (1 X 10(-8)M) also significantly inhibited gonadotropin-stimulated accumulation of cAMP in response to bovine luteinizing hormone (bLH) or human chorionic gonadotropin (hCG). Gonadotropin-stimulated progesterone secretion was inhibited by ANF (1 X 10(-10) - 1 X 10(-9)M) in these cultured Leydig tumor cells. Approximately 50% inhibition of progesterone secretion was observed at the peptide concentration of 1 X 10(-9) M.  相似文献   

19.
The effect of the selective histamine H3 receptor agonists (R)alpha-methylhistamine, (R)MHA and immepip (IMM) on intestinal smooth muscle contractility was investigated on isolated cells from the longitudinal muscle of the guinea pig ileum. (R)MHA (10(-13)-10(-8) M) and IMM (10(-13)-10(-8) M) did not significantly modify the basal length of intestinal cells; in contrast both agonists (10(-15)-10(-11) M) prevented the contraction produced by acetylcholine (10(-7) M). The (S)-isomer of alpha-methylhistamine, (S)MHA, was inactive both on basal contractility and on acetylcholine-induced contractions. The relaxant effect of (R)MHA was not modified by famotidine (10(-7) M), but totally prevented by the selective H3 receptor antagonist clobenpropit (10(-8) M), which per se did not modify either basal contractility or the contractile response to acetylcholine. These data indicate that inhibitory histamine H3 receptors are present on smooth muscle cells of the guinea pig ileum and can be activated by very low concentrations of selective agonists. It is not clear, however, whether they can have a functional importance in the regulation of intestinal contractility in an intact system.  相似文献   

20.
The present study investigated the role of nitric oxide (NO) on atrial natriuretic peptide (ANP) release stimulated by angiotensin II (Ang II) (10(-7) M) in superfused sliced rat atrial tissue. The use of N(G)-nitro-L-arginine methyl ester (L-NAME) at 10(-4) M, an inhibitor of nitric oxide synthase did not modify basal ANP release. In presence of Ang II (10(-7) M), we observed that L-NAME enhanced ANP secretion induced by Ang II. Furthermore, cGMP levels increased significantly in the presence of Ang II and was attenuated by L-NAME. On the other hand, the perfusion of 8 bromo-cGMP (10(-5) M) with Ang II reduced the effect of this octapeptide on ANP secretion. Secondly, we evaluated the effect of authentic NO on ANP release and observed that perfusion of NO reduced significantly the effect of Ang II on ANP release. We propose that the effect of Ang II on ANP secretion was modulated by NO likely via cGMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号