首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhou J  Zhang Y  Lu HY 《生理科学进展》2009,40(4):372-374
高糖环境下体内积聚的晚期糖基化终产物(advanced glycation end products,AGEs)是糖尿病慢性并发症的主要致病因素.AGEs可通过对蛋白的修饰直接作用于机体或通过受体介导的作用影响机体.本文就AGEs的来源、病理生理作用,尤其是在糖尿病肾病(diabetic nephropathy,DN)发生发展中的作用及治疗干预作一综述.  相似文献   

2.
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.  相似文献   

3.
4.
高级糖化终末产物(advanced glycation end product,AGE)参与了糖尿病、动脉粥样硬化、癌症等多种疾病的发生和发展,尤其是其导致的糖尿病肾病(diabetic nephropathy,DN)是终末期肾衰竭的主要病因,因此探索以AGEs为靶点的DN治疗手段成为了国内外研究的热点。本文概述了国内外关于AGE参与DN的发病机制,靶向AGE的DN治疗策略,以及天然中药基于AGE为靶点干预DN的研究进展,初步探讨了靶向AGE的DN天然药物的筛选模型。  相似文献   

5.
Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.  相似文献   

6.
The exact pathophysiology of non-alcoholic steatohepatitis (NASH) is not known. Previous studies suggest that dietary advanced glycation end products (AGEs) can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034), compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01) and aspartate aminotransferase (P = 0.02) than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver.  相似文献   

7.
Receptor for advanced glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules whose repertoire of ligands includes advanced glycation end products (AGEs), amyloid fibrils, amphoterins and S100/calgranulins. The overlapping distribution of these ligands and cells overexpressing RAGE results in sustained receptor expression which is magnified via the apparent capacity of ligands to upregulate the receptor. We hypothesize that RAGE-ligand interaction is a propagation factor in a range of chronic disorders, based on the enhanced accumulation of the ligands in diseased tissues. For example, increased levels of AGEs in diabetes and renal insufficiency, amyloid fibrils in Alzheimer's disease brain, amphoterin in tumors and S100/calgranulins at sites of inflammation have been identified. The engagement of RAGE by its ligands can be considered the 'first hit' in a two-stage model, in which the second phase of cellular perturbation is mediated by superimposed accumulation of modified lipoproteins (in atherosclerosis), invading bacterial pathogens, ischemic stress and other factors. Taken together, these 'two hits' eventuate in a cellular response with a propensity towards tissue destruction rather than resolution of the offending pathogenic stimulus. Experimental data are cited regarding this hypothesis, though further studies will be required, especially with selective low molecular weight inhibitors of RAGE and RAGE knockout mice, to obtain additional proof in support of our concept.  相似文献   

8.
Clearance of apoptotic cells by macrophages and other phagocytic cells, called efferocytosis, is a central process in the resolution of inflammation. Although the receptor for advanced glycation end products (RAGE) has been shown to participate in a variety of acute and chronic inflammatory processes in the lungs and other organs, a role for RAGE in efferocytosis has not been reported. In the present studies, we examined the potential involvement of RAGE in efferocytosis. Macrophages from transgenic RAGE(-/-) mice showed a decreased ability to engulf apoptotic neutrophils and thymocytes. Pretreatment of RAGE(+/+) macrophages with advanced glycation end products, which competitively bind to RAGE, or Abs against RAGE diminished phagocytosis of apoptotic cells. Overexpression of RAGE in human embryonic kidney 293 cells resulted in an increased ability to engulf apoptotic cells. Furthermore, we found that incubation with soluble RAGE enhances phagocytosis of apoptotic cells by both RAGE(+/+) and RAGE(-/-) macrophages. Direct binding of RAGE to phosphatidylserine (PS), an "eat me" signal highly expressed on apoptotic cells, was shown by using solid-phase ELISA. The ability of RAGE to bind to PS on apoptotic cells was confirmed in an adhesion assay. Decreased uptake of apoptotic neutrophils by macrophages was found under in vivo conditions in the lungs and peritoneal cavity of RAGE(-/-) mice. These results demonstrate a novel role for RAGE in which it is able to enhance efferocytosis through binding to PS on apoptotic cells.  相似文献   

9.
Recent immunological studies demonstrated that proteins in vivo in several diseases are subjected to post-translational modification by advanced glycation end products (AGEs), suggesting a potential role of AGEs in aging and age-enhanced disease processes such as diabetic complications, atherosclerosis and Alzheimer's disease. Nvarepsilon-(Carboxymethyl)lysine (CML) is one of the major AGE-structures demonstrated in vivo so far. In the present study, membrane proteins from young erythrocyte population were compared with those from senescent erythrocytes separated from the same individual in their CML-contents using a monoclonal antibody for CML (6D12). SDS-polyacrylamide gel electrophoresis and subsequent Western blot showed that 6D12 bound to the band 1, 2, 3, 4.2, 5, 6 and 7 proteins from senescent erythrocytes, but not to those from young erythrocytes. Furthermore, quantitative estimation of the reactivity of 6D12 to these erythrocyte membranes by ELISA showed that the reactivity of 6D12 to senescent erythrocyte membranes was 3- to 6-fold higher than that of young erythrocyte membranes. These results indicate that membrane proteins of circulating erythrocytes undergo CML-modification, and the modified proteins accumulated in an age-dependent manner during the life span of erythrocytes.  相似文献   

10.
Effect of advanced glycation end products on lens epithelial cells in vitro   总被引:2,自引:0,他引:2  
The extended exposure of proteins to reducing sugars leads to nonenzymatic glycation with the accumulation of advanced glycation end products (AGEs). Long-lived proteins, such as collagen and crystallins, are subjected to this modification, and are implicated as causal factors in several diseases including diabetic complications, cataracts, and arteriosclerosis. One means through which AGEs modulate cellular interactions is via binding to specific receptors. In the current study, the existence of AGEs in human anterior polar lens capsules of cataracts was confirmed using a combination of dot-immunoblot and fluorescent detection. Human lens epithelial cells (LECs) attached to anterior lens capsules expressed mRNA for the receptor for AGEs (RAGE). The interaction of LECs with AGEs using bovine lens epithelial explants demonstrated that AGEs induced mRNAs and proteins of fibronectin, collagen type I, aberrant extracellular matrix proteins, and alpha-SMA, a specific marker for myofibroblastic cells. These findings suggest that AGEs may alter cellular functions which induce mRNAs and proteins associated with fibrosis in LECs.  相似文献   

11.
Glycation is a nonenzymatic condensation reaction between reducing sugars and amino groups of proteins that undergo rearrangements to stable ketoamines, leading to the formation of advanced glycation end products (AGEs) including fluorescent (argpyrimidine) and nonfluorescent (Nε-carboxymethyllysine; CML) protein adducts and protein cross-links. AGEs are formed via protein glycation and correlate with processes resulting in aging and diabetes complications. Reactive carbonyl species such as glyoxal and methylglyoxal are ubiquitous by-products of cell metabolism that potently induce the formation of AGEs by nonenzymatic protein glycation and may achieve plasma concentrations of 0.3–1.5 μmol/L. In this in vitro study histone H1 glycation by glyoxal, methylglyoxal, or ADP-ribose was used to model nonoxidative protein glycation, permitting us to distinguish specific AGE inhibition from general antioxidant action. Rutin derivatives were tested as AGE inhibitors because rutin, a common dietary flavonoid that is consumed in fruits, vegetables, and plant-derived beverages, is metabolized by gut microflora to a range of phenolic compounds that are devoid of significant antioxidant activity and achieve blood concentrations in the μmol/L range. Our data show that in a 1:1 stoichiometry with glyoxal or methylglyoxal, 3,4-dihydroxyphenylacetic acid (DHPAA) and 3,4-dihydroxytoluene (DHT) are powerful inhibitors of CML and argpyrimidine histone H1 adduct formation, respectively. Furthermore, when DHPAA and DHT were tested as inhibitors of histone H1 glycation by the powerful glycating agent ADP-ribose, they inhibited glycation as effectively as aminoguanidine. These results suggest that dietary flavonoids may serve as effective AGE inhibitors and suggest mechanisms whereby fruit- and vegetable-rich diets contribute to the prevention of processes resulting in aging and diabetes complications.  相似文献   

12.
Advanced glycation end product-modified proteins are known for accumulating during aging and in several pathological conditions such as diabetes, renal failure, and neurodegenerative disorders. There is little information about the intracellular fate of endocytosed advanced glycation end products (AGEs) and their influence on proteolytic systems. However, it is known that the lysosomal system is impaired during aging. Therefore, undegraded material may accumulate and play a considerable role in the development of diverse diseases. To investigate if AGEs can be degraded and to test whether they accumulate because of impaired lysosomal proteases we studied the effects of advanced glycation end products on the endosomal-lysosomal system. Five different types of AGEs were generated by bovine serum albumin incubation with glyoxal, methylglyoxal, glucose, fructose, and ribose. The first experiments revealed the uptake of AGEs by the macrophage cell line RAW 264.7. Further investigations demonstrated an increase in cathepsin D and L activity and an increase in mature cathepsins D and L. Increased activities were accompanied by the presence of more lysosomes, measured by staining with LysoTracker blue. To specify the roles of cathepsins D and L we used knockout cells to test the roles of both cathepsins on the toxicity of advanced glycation end products. In summary we conclude that both cathepsins are required for a reduction in advanced glycation end product-induced cytotoxicity.  相似文献   

13.
Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown. Using standardized procedures and a variety of AGE measures, the present study aimed to characterize the AGEs that bind to RAGE and their formation kinetics in vitro. To produce AGEs with varying RAGE binding affinity, bovine serum albumin (BSA) AGEs were prepared with 0.5M glucose, fructose, or ribose at times of incubation from 0 to 12 weeks or for up to 3 days with glycolaldehyde or glyoxylic acid. The AGE-BSAs were characterized for RAGE binding affinity, fluorescence, absorbance, carbonyl content, reactive free amine content, molecular weight, pentosidine content, and N-epsilon-carboxymethyl lysine content. Ribose-AGEs bound RAGE with high affinity within 1 week of incubation in contrast to glucose- and fructose-AGE, which required 12 and 6 weeks, respectively, to generate equivalent RAGE ligands (IC50=0.66, 0.93, and 1.7 microM, respectively). Over time, all of the measured AGE characteristics increased. However, only free amine content robustly correlated with RAGE binding affinity. In addition, detailed protocols for the generation of AGEs that reproducibly bind RAGE with high affinity were developed, which will allow for further study of the RAGE-AGE interaction.  相似文献   

14.
Advanced glycation end products (AGEs) formed from glyceraldehyde (Gcer) and glycolaldehyde (Gcol) are involved in the pathogenesis of diabetic complications, via interactions with a receptor for AGEs (RAGE). In this study, we aimed to elucidate the RAGE-binding structure in Gcer and Gcol-derived AGEs and identify the minimal moiety recognized by RAGE. Among Gcer and Gcol-derived AGEs, GLAP (glyceraldehyde-derived pyridinium) and GA-pyridine elicited toxicity in PC12 neuronal cells. The toxic effects of GLAP and GA-pyridine were suppressed in the presence of anti-RAGE antibody or the soluble form of RAGE protein. Furthermore, the cytotoxicity test using GLAP analog compounds indicated that the 3-hydroxypyridinium (3-HP) structure is sufficient for RAGE-dependent toxicity. Surface plasmon resonance analysis showed that 3-HP derivatives directly interact with RAGE. These results indicate that GLAP and GA-pyridine are RAGE-binding epitopes, and that 3-HP, a common moiety of GLAP and GA-pyridine, is essential for the interaction with RAGE.  相似文献   

15.
Summary The results obtained by different mass spectrometric approaches in the field of advanced glycation of proteins are reported and discussed in detail in comparison with those obtained by other analytical methodologies (fluorescence and absorbance spectroscopies, radioimmunoassay, enzyme-linked immunosorbent assay). They have been subdivided in three main groups: analysis on degraded glycated proteins, direct analysis of glycated proteins and studies on the reaction between protected lysine and glucose. The general overview so achieved indicate mass spectrometry as a particularly valid analytical method in this field of research.  相似文献   

16.
Advanced glycation end products (AGEs) are produced by the non-enzymatic glycation of proteins and lipids. AGE levels are pathologically elevated in a number of inflammatory diseases and in diabetes mellitus. There is evidence that AGEs, acting through the receptor for AGEs, contribute to diabetic complications. Nephropathy is a major complication of diabetes mellitus. However, the initiating molecular events that trigger diabetic renal disease are unknown. Renal mesangial cells produce excess extracellular matrix in response to treatment with transforming growth factor-beta, and excess mesangial cell matrix production, by impairing glomerular filtration, contributes to diabetic nephropathy. AGEs are known to trigger the autocrine production and release of transforming growth factor-beta. However, it is unclear how AGEs signal in mesangial cells. Here we show that treatment of mesangial cells with AGEs and with the receptor for AGEs agonist S100 triggers activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) pathways. AGEs trigger the GTP loading of mesangial cell Ras, and AGE activation of ERK requires Ras. We observe that Ki-Ras, but not Ha-Ras, is the target of AGE action. Surprisingly, inhibition of PI3K blocks both ERK and Ki-Ras activation. We also observe that activation of ERK and the PI3K target kinase protein kinase-B is blocked with free radical scavengers, indicating a role for reactive oxygen species in AGE recruitment of PI3K. Thus, AGEs signal to Ki-Ras and ERK through reactive oxygen species-dependent activation of PI3K.  相似文献   

17.
Nonenzymatic glycation, the reaction of glucose and other reducing sugars with protein, reversibly produces Amadori products and over a long period irreversible advanced glycation end products. In diabetes, these reactions are greatly accelerated and are important in the pathogenesis of diabetic complications.

In vitro glycation was studied with bovine albumin as the model protein. A mixture of 25 mM glucose/fructose was used as the glycating agent. The Amadori product was quantitated by thiobarbituric acid colorimetry after hydrolysis. Advanced glycation end products were measured by their intrinsic fluorescence. A number of vitamins and nutrients were found to be potent inhibitors of both the glycation reaction and the subsequent end products. The nutrients were effective at physiological concentrations and exhibited dose-response relationships. The inhibitors included ascorbic acid, tocopherol, pyridoxal, niacinamide, sodium selenite, selenium yeast, and carnosine. A significant correlation was found between the inhibition of glycation and the inhibition of AGE formation (P < 0.001). One of the nutrients, ascorbic acid, was used in a pilot study. Eighteen normal subjects, 7 college age and 10 middle age, were supplemented with 1,000 mg of ascorbic acid in the form of Re-Natured Vitamin C® for a period of 4 weeks. Serum protein glycation was decreased an average of 46.8% (P < 0.01). These results underline the importance of nutrition in diabetes and indicate the possibility of therapeutic use of these nutrients for the prevention of diabetic complications.  相似文献   


18.
Advanced glycation end products (AGEs) may play an important adverse role in process of atherosclerosis, diabetes, aging and chronic renal failure. Levels of N(epsilon)-carboxymethyllysine and fluorescent AGE values were estimated in two nutritional population groups--alternative group (vegetarians--plant food, milk products, eggs) and traditional group (omnivorous subjects). Vegetarians have a significantly higher carboxymethyllysine content in plasma and fluorescent AGE values. Intake of proteins, lysine and monosaccharides as well as culinary treatment, consumption of food AGEs (mainly from technologically processed products) and the routes of Maillard reaction in organism are the substantial sources of plasma AGEs. Vegetarians consume less proteins and saccharides. Lysine intake is significantly reduced (low content in plant proteins). Subjects on alternative nutrition do not use high temperature for culinary treatment and consume low amount of technologically processed food. Fructation induced AGE fluorescence is greater as compared with that induced by glucose. It is due to higher participation of a more reactive acyclic form of fructose. Intake of vegetables and fruit with predominance of fructose is significantly higher in vegetarians. Comparison of nutrition and plasma AGEs in vegetarian and omnivorous groups shows that the higher intake of fructose in alternative nutrition of healthy subjects may cause an increase of AGE levels.  相似文献   

19.
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p < 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号