共查询到20条相似文献,搜索用时 15 毫秒
1.
The major acidic exopolysaccharide of Rhizobium meliloti, termed succinoglycan, is required for nodule invasion and possibly nodule development. Succinoglycan is a polymer of octasaccharide subunits composed of one galactose residue, seven glucose residues, and acetyl, succinyl, and pyruvyl modifications, which is synthesized on an isoprenoid lipid carrier. A cluster of exo genes in R. meliloti are required for succinoglycan production, and the biosynthetic roles of their gene products have recently been determined (T.L. Reuber and G. C. Walker, Cell 74:269-280, 1993). Our sequencing of 16 kb of this cluster of exo genes and further genetic analysis of this region resulted in the discovery of several new exo genes and has allowed a correlation of the genetic map with the DNA sequence. In this paper we present the sequences of genes that are required for the addition of the succinyl and pyruvyl modifications to the lipid-linked intermediate and genes required for the polymerization of the octasaccharide subunits or the export of succinoglycan. In addition, on the basis of homologies to known proteins, we suggest that ExoN is a uridine diphosphoglucose pyrophosphorylase and that ExoK is a beta(1,3)-beta (1,4)-glucanase. We propose a model for succinoglycan biosynthesis and processing which assigns roles to the products of nineteen exo genes. 相似文献
2.
Rhizobium meliloti Rm1021 requires a Calcofluor-binding exopolysaccharide, termed succinoglycan or EPS I, to invade alfalfa nodules. We have determined that a strain carrying a mutation in the exoZ locus produces succinoglycan that lacks the acetyl substituent. The exoZ mutant nodules alfalfa normally. 相似文献
3.
The detailed structure of the symbiotically important exopolysaccharide succinoglycan from Rhizobium meliloti Rm1021 was determined by mass spectrometry with electrospray ionization and collision-induced dissociation of the octameric oligosaccharide repeating unit. Previously undetermined locations of the succinyl and acetyl modifications were determined, in respect to both residue locations within the octamer and the carbon positions within the pyranose ring. Glycosidic linkages determined previously by methylation analysis were also verified. 相似文献
4.
Summary Chemotaxis by Rhizobium meliloti strain Ve 26 has been studied and conditions required for chemotaxis have been defined, using the Adler capillary assay technique. Several sugars and amino-acids were shown to be attractants with varying effectiveness for this organism: sugars are weak attractants (except gluconate) and amino-acids are good attractants (except unpolar amino-acids). 相似文献
5.
The growth of Rhizobium meliloti 1021 in an experimental alfalfa (Medicago sativa L.) rhizosphere was stimulated by adding nanomolar amounts of biotin. To overcome this biotin limitation, R. meliloti strains were constructed by conjugating the Escherichia coli biotin synthesis operon into biotin auxotroph R. meliloti 1021-B3. Transconjugant strains Rm1021-WS10 and Rm1021-WS11 grew faster in vitro and achieved a higher cell density than did R. meliloti 1021 and overproduced biotin on a defined medium. The increase in cell yield was associated with as much as a 99% loss in viability for Rm1021-WS11, but data suggested that a separate stabilizing factor in the E. coli DNA reduced cell death in Rm1021-WS10. In rhizosphere tests, the recombinant strains showed delayed growth and competed poorly against Rm1021. 相似文献
7.
The production of succinoglycan by Sinorhizobium meliloti Rm1021 is required for successful nodule invasion by the bacterium of its host plant, alfalfa. Rm1021 produces succinoglycan, an acidic exopolysaccharide composed of an octasaccharide repeating unit modified with acetyl, succinyl, and pyruvyl moieties, in both low- and high-molecular-weight forms. Low-molecular-weight (LMW) succinoglycan, previously thought to consist of monomers, trimers, and tetramers of the repeating unit, has been reported as being capable of promoting the formation of nitrogen-fixing nodules by succinoglycan-deficient derivatives of strain Rm1021. We have determined that the three size classes of LMW succinoglycan species are in fact monomers, dimers, and trimers of the repeating unit and that the trimer is the species active in promoting nodule invasion. A detailed structural analysis of the components of LMW succinoglycan by using various chromatographic techniques, along with nuclear magnetic resonance analyses, has revealed that there is considerable heterogeneity within the LMW succinoglycan oligomers in terms of noncarbohydrate substitutions, and we have determined the structural basis of this heterogeneity. 相似文献
8.
Glycosidases and glycosyl transferases fall into two major mechanistic classes; those that hydrolyse the glycosidic bond with retention of anomeric configuration and those that do so with inversion. There are, however, two classes of transferases: those that use nucleotide phosphosugars (NP-sugar-dependent) and those that simply transglycosylate between oligosaccharides or polysaccharides (transglycosylases). The latter are mechanistically similar to retaining glycosidases while the mechanisms of NP-sugar-dependent transferases are far from clear. Retaining glycosidases and the transglycosylases employ a mechanism involving a covalent glycosyl–enzyme intermediate formed and hydrolysed with acid/base catalytic assistance via oxocarbenium ion-like transition states. This intermediate has been trapped on glycosidases in two distinct ways, either by modification of the substrate through fluorination, or of the enzyme through mutation of key residues. A third method has been developed for trapping the intermediate on transglycosylases involving the use of incompetent substrates that allow formation of the intermediate, but prohibit its transfer as a consequence of their acceptor hydroxyl group being removed. Three-dimensional structures of several of these glycosyl–enzyme complexes, along with those of Michaelis complexes, have been determined through X-ray crystallographic analysis, revealing the identities of important amino acid residues involved in catalysis. In particular they reveal the involvement of the carbonyl oxygen of the catalytic nucleophile in strong hydrogen bonding to the sugar 2-hydroxyl for the β-retainers or in interactions with the ring oxygen for -retainers. The glucose ring in the −1 (cleavage) site in the intermediates formed on several cellulases and a β-glucosidase adopts a normal 4C1 chair conformation. By contrast the xylose ring at this site in a xylanase is substantially distorted into a 2,5B boat conformation, an observation that bears significant stereoelectronic implications. Substantial distortion is also observed in the substrate upon binding to several β-glycosidases, this time to a 1S3 skew boat conformation. Much less distortion is seen in the substrate bound on an -transglycosylase. Finally an efficient catalyst for synthesis, but not hydrolysis, of glycosidic bonds has been generated by mutation of the glutamic acid catalytic nucleophile of a β-glucosidase to an alanine. When used with -glucosyl fluoride as a glycosyl donor, along with a suitable acceptor, oligosaccharides up to five sugars in length have been made with yields of up to 90% on individual steps. These new enzymes have been named Glycosynthases. 相似文献
9.
During the symbiotic interaction between alfalfa and the nitrogen-fixing bacterium Rhizobium meliloti, the bacterium induces the formation of nodules on the plant roots and then invades these nodules. Among the bacterial genes required for nodule invasion are the exo genes, involved in production of an extracellular polysaccharide, and the ndv genes, needed for production of a periplasmic cyclic glucan. Mutations in the exoD gene result in altered exopolysaccharide production and in a nodule invasion defect. In this work we show that the stage of symbiotic arrest of exoD mutants is similar to that of other exo and ndv mutants. However, the effects of exoD mutations on exopolysaccharide production and growth on various media are different from the effects of other exo and ndv mutations. Finally, exoD mutations behave differently from other exo mutations in their ability to be suppressed or complemented extracellularly. The results suggest that exoD represents a new class of Rhizobium genes required for nodule invasion, distinct from the other exo genes and the ndv genes. We discuss models for the function of exoD. 相似文献
10.
Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functionally interchangeable and similar in evolutionary origin. NGR234 exoC and exoY corresponded to R. meliloti exoB and exoF, respectively. NGR234 exoD was found to be an operon that included genes equivalent to exoM, exoA, and exoL in R. meliloti. Complementation of R. meliloti exoP, -N, and -G by NGR234 R'3222 indicated that additional equivalent genes remain to be found on the R-prime. We were not able to complement NGR234 exoB with R. meliloti DNA. In addition to functional and evolutionary equivalence of individual genes, the general organization of the exo regions was similar between the two species. It is likely that the same ancestral genes were used in the evolution of both exopolysaccharide biosynthetic pathways and probably of pathways in other species as well. 相似文献
11.
Transformation of R factor RP4 and its derivative pRK290 from Escherichia coli to Rhizobium meliloti is reported. The efficiency of transformation was in the range of 10(-5) per viable cell. In addition, chromosomal DNA prepared from one R. meliloti strain resistant to streptomycin was transferred to the isoleucine-valine-requiring mutant susceptible to streptomycin. 相似文献
12.
Methionine, among the various additions to the medium, could only replace cobalt ion or vitamin B 12 required for the growth of . It was demonstrated that there exists a vitamin B 12-dependent terminal step in the methionine synthesis, that is, N 5CH 3-tetrahydrofolate-homocysteine transmethylase, which can also catalyze the methyl transfer from CH 3B 12 to homocysteine, in the cell-free extracts of Rhizobium meliloti. These facts seem to indicate that the vitamin B 12-dependent pathway to methionine functions mainly among the B 12-dependent enzymatic systems in the wild-type symbionts and this is the chief nutritional significance of cobalt. 相似文献
13.
Thymidine is rapidly catabolized to thymine, beta-aminoisobutyric acid, and carbon dioxide by Rhizobium meliloti cells. The incorporation of labelled thymidine into the DNA of R. meliloti cells can be enhanced by the addition of low concentrations (10-20 micrograms/mL) of deoxyadenosine or other nucleosides (adenosine, uridine, guanosine). However, at high concentrations ( greater than 50 micrograms/mL) these compounds inhibit thymidine incorporation. Conditions to obtain highly radioactive DNA of Rhizobium are described. 相似文献
14.
Generalized transduction of Rhizobium meliloti 1021 was carried out by bacteriophage N3. Genetic markers on the chromosome and the pSym megaplasmid were transduced, along with markers on several IncP plasmids. Cotransduction between transposon Tn5 insertions and integrated recombinant plasmid markers permitted correlation of cotransductional frequencies and known physical distances. Bacteriophage N3 was capable of infecting several commonly used strains of R. meliloti. 相似文献
16.
We report a phenomenon similar to catabolite repression in Rhizobium meliloti. Succinate, which allows the highest observed rate of growth of R. meliloti, caused an immediate reduction of beta-galactosidase activity when added to cells growing in lactose. A Lac- mutant was unaltered in nodulation and nitrogen fixation capacities, but a pleiotropic mutant deficient in several catabolic properties was unable to produce effective nitrogen-fixing nodules. 相似文献
17.
The acidic Calcofluor-binding exopolysaccharide of Rhizobium meliloti Rm1021 plays one or more critical roles in nodule invasion and possibly in nodule development. Two loci, exoR and exoS, that affect the regulation of synthesis of this exopolysaccharide were identified by screening for derivatives of strain Rm1021 that formed mucoid colonies that fluoresced extremely brightly under UV light when grown on medium containing Calcofluor. The exopolysaccharide produced in large quantities by the exoR95::Tn5 and exoS96::Tn5 strains was indistinguishable from that produced by the parental strain Rm1021, and its synthesis required the function of at least the exoA, exoB, and exoF genes. Both the exoR and exoS loci were located on the chromosome, and the exo96::Tn5 mutation was 84% linked to the trp-33 mutation by phi M12 transduction. Synthesis of the Calcofluor-binding exopolysaccharide by strain Rm1021 was greatly stimulated by starvation for ammonia. In contrast, the exoR95::Tn5 mutant produced high levels of exopolysaccharide regardless of the presence or absence of ammonia in the medium. The exoS96::Tn5 mutant produced elevated amounts of exopolysaccharide in the presence of ammonia, but higher amounts were observed after starvation for ammonia. The presence of either mutation increased the level of expression of exoF::TnphoA and exoP::TnphoA fusions (TnphoA is Tn5 IS50L::phoA). Analyses of results obtained when alfalfa seedlings were inoculated with the exoR95::Tn5 strain indicated that the mutant strain could not invade nodules. However, pseudorevertants that retained the original exoR95::Tn5 mutation but acquired unlinked suppressors so that they produced an approximately normal amount of exopolysaccharide were able to invade nodules and fix nitrogens. The exoS95::Tn5 strain formed Fix+ nodules, although some minor variability was observed. 相似文献
20.
A succinate dehydrogenase mutant strain of Rhizobium meliloti was isolated after nitrosoguanidine mutagenesis. It failed to grow on succinate, glutamate, acetate, pyruvate, or arabinose but grew on glucose, sucrose, fructose, and other carbohydrates. The mutant strain showed delayed nodulation of lucerne plants, and the nodules were white and ineffective. A spontaneous revertant strain of normal growth phenotype induced red and effective nodules. 相似文献
|