首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel type of phosphofructokinase from plants   总被引:3,自引:0,他引:3  
A phosphofructokinase (PFK) has been purified to homogeneity from carrot roots as a large aggregated form (molecular weight greater than 5 million). The purified plant PFK, seemingly the cytosolic form, differed from its mammalian counterpart in a lower subunit molecular weight (60,000 verses 80,000), in being only sluggishly activated by fructose-2,6-bisphosphate, and in immunological properties. Similar to liver PFK, the purified carrot PFK could be dissociated by addition of 5 mM ATP to small and intermediate forms (respective molecular mass values of 2.4 X 10(5) and 6 X 10(5) Da). These small and intermediate forms could partially reassociate to the original large form in the presence of 5 mM Fru-6-P. Alkaline pH also effected the dissociation of the large and intermediate forms to the small form of PFK. All forms were present in significant amounts in freshly prepared carrot root extracts. The different forms of PFK showed characteristic pH activity profiles with pH optima of 8.6 (small form), 5.5 and 9.0 (intermediate form), and 7.0 and 8.5 (large forms). As alkaline pH (greater than or equal to approximately 8.5) dissociated the large and intermediate enzyme forms to yield the small form, it was concluded the "true" pH optima of the intermediate and large forms are pH 5.5 and 7.0, respectively. The pH optimum displayed by the intermediate and large forms in the alkaline region (pH 8.5-9.0) was considered to be due to their dissociation during assay. The different forms of PFK also had dissimilar regulatory properties, each showing a characteristic response to ATP, citrate, and Pi, but all were sensitive to inhibition by phosphoenolpyruvate and NADPH. Leaf cytosolic PFK, partially purified from spinach, showed similar properties. The results suggest that metabolite-dependent aggregation-disaggregation is a mechanism whereby plants regulate the activity of cytosolic PFK and the accompanying rate of glycolytic carbon flux.  相似文献   

2.
Cellulomonas sp. isolated from soil produces a high level of α-mannosidase (α-mannanase) inductively in culture fluid. The enzyme had two different molecular weight forms, and the properties of the high-molecular-weight form were reported previously (Takegawa, K. et al.: Biochim. Biophys. Acta, 991, 431–437, 1989). The low-molecular-weight α-mannosidase was purified to homogeneity by polyacrylamide gel electrophoresis. The molecular weight of the enzyme was over 150,000 by gel filtration. Unlike the high-molecular-weight form, the low-molecular-weight enzyme readily hydrolyzed α-1,2- and α-1,3-linked mannose chains.  相似文献   

3.
Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.  相似文献   

4.
The subunit structure of Bacillus subtilis α-amylase has been studied by gel filtration and by SDS-gel electrophoresis. The crystalline enzyme was found to be a 96,000 dalton zinc tetramer. Incubation of the 96,000 species at pH 5.5 or with EDTA produced a 48,000 zinc-free dimer; incubation with 100 mm sodium chloride produced a 72,000 zinc trimer; incubation at pH 8.5 produced a 48,000 zinc dimer and a 24,000 zinc-free monomer. Incubation of the 48,000 zinc dimer with EDTA produced a 24,000 monomer. After standing, the 48,000 zinc dimer formed insoluble aggregates that could be dissolved by treatment with EDTA. The aggregates had molecular weights between 125,000 and 400,000. The 72,000 zinc trimer also aggregated to form a single 144,000 species. All of the forms were enzymatically active, although with widely differing specific activities. Schematic diagrams for the structures of the multiple forms and their interconversions are presented.  相似文献   

5.
Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.  相似文献   

6.
alpha-L-Fucosidase has been purified 12 000 fold from human placenta. The enzyme is a glycoprotein containing, by weight: 0.9% galactose; 1.9% mannose, 1.9% N-acetylglucosamine and 1.9% N-acetylneuraminic acid. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate separated proteins with molecular weights ot 55 000, 51 400 and 25 000. Resolution of the two larger protein bands varied with the gel system and these proteins may differ only in carbohydrate content. Gel filtration of te purified enzyme failed to separate the three proteins. Treatments with the cross-linking reagent dimethyl suberimidate prior to electrophoresis, resulted in a diminution of the original protein bands and the formation of oligomers with molecular weights of 80 000, 100 000, 130 000, and 144 000. These results suggest that the heavy (55 000 and 51 400) and light (25 000) proteins are structurally associated. The molecular weight of the native enzyme, measured by gel filtration, was dependent on the pH of the eluting buffer. At pH 5.0 or 6.0 a catalytically active peak was observed, with a molecular weight of 305 000. At pH 7.5 this peak was completely absent and the enzyme eluted as an asymmetrical peak with an apparent molecular weight of about 60 000. The reduction in apparent molecular weight at pH 7.5 was reversible by dialysis of isolated fractions at pH 6.0. In agreement with these findings the sedimentation coefficient was 8.5 S at pH 5.0 but only 3.6 S at pH 7.5. The results can be accounted for by the existence of a pH-dependent equilibrium between aggregated and dissociated forms of the enzyme or by pH-depedent conformational changes.  相似文献   

7.
The pituitary of the Australian lungfish, Neoceratodus forsteri, was screened immunohistochemically with heterologous antisera specific for either the C-terminal of mammalian beta-endorphin or the acetylated N-terminal of beta-endorphin. Immunopositive cells were only detected with the N-terminal specific antiserum; these cells were restricted to the intermediate pituitary. Acid extracts of the intermediate pituitary were fractionated by Sephadex gel filtration chromatography, CM cation exchange chromatography and reverse phase HPLC. Fractions were analyzed by radioimmunoassay (RIA) with a N-acetyl specific beta-endorphin RIA and by radioreceptor assay for the presence of opiate active forms of beta-endorphin. Both immunoreactive and opiate active forms of beta-endorphin were detected. Of the total beta-endorphin-related material isolated from the intermediate pituitary, approximately 97% was detected with the N-terminal specific RIA and approximately 3% was detected by the radioreceptor assay. The N-acetylated immunoreactive beta-endorphin could be separated into two forms. The major form had an apparent molecular weight of 3.2 Kda. This material had a net charge at pH 2.5 of +5. The minor form of immunoreactive beta-endorphin had an apparent molecular weight of 1.4 Kda and a net charge at pH 2.5 of +1. Neither immunoreactive form exhibited receptor binding activity in the radioreceptor assay. A single peak of opiate active beta-endorphin was detected. This material had an apparent molecular weight of 3.5 Kda and a net charge at pH 2.5 of +7.  相似文献   

8.
The relative amounts of the various forms of bioassayable insulin-like growth factors (IGF) isolated from human serum or serum fraction Cohn IV-1 depend on the purification procedure. With acid gel filtration or acid/ethanol extraction as the initial step, IGF-II (pI approximately 6.5) was the most abundant (40-70%) followed by somatomedin A (pI approximately 7.4; 15-23%), an acidic form of insulin-like activity (ILA pI 4.8) (13-21%) and IGF-I (pI approximately 8.5; 5-27%). If, however, pH 5.5 ion-exchange chromatography on SP-Sephadex was used prior to acid gel filtration, the acidic pI 4.8 form was the major (greater than 90%) species recovered and was accompanied by a quantitative loss of the other IGF species. This suggested a possible conversion of IGF-I, somatomedin A and/or IGF-II to the acidic ILA pI 4.8 form(s) during the SP-Sephadex procedure. Further experiments indicated that differences in the yields of ILA pI 4.8 were not due simply to differences in the initial pH conditions of the various methods (i.e. acid versus neutral), although exposure to pH 9.7 (a pH experienced during elution of IGF activity from the SP-Sephadex) did appear to play a role. The involvement of the carrier protein in the conversion process was tested by subjecting carrier-free IGF-I and IGF-II to the SP-Sephadex procedure. No conversion of the free forms to ILA pI 4.8 occurred. To examine the possible role of proteinase in the conversion of IGFs to ILA pI 4.8, SP-Sephadex chromatography was performed in the presence of a broad spectrum proteinase inhibitor. The IGF distribution pattern obtained closely resembled the 'normal' pattern seen with acid gel filtration, indicating that proteinase inactivation had prevented conversion to ILA pI 4.8. These data suggest that proteolytic conversion of IGF-I, somatomedin A and IGF-II to more acidic ILA pI 4.8 form(s) (i) occurs during SP-Sephadex chromatography, (ii) is not prevented simply by prior acid exposure, and (iii) takes place only when IGF-I and -II are in their high-Mr carrier-bound forms. Since IGF-I and IGF-II, although homologous, have unique amino acid sequences, the conversion of both IGFs implies that at least two acidic ILA forms exist. Nevertheless, because ILA pI 4.8 retains the full spectrum of IGF bioactivities in vitro, and significant quantities are present in normal human serum (21%), it would suggest that proteolytic conversion of IGF-I, somatomedin A and IGF-II to ILA pI 4.8 in vivo may be a physiologically significant event.  相似文献   

9.
The solubilization of 80% of the acetylcholinesterase activity of mouse brain was performed by repeated 2h incubations of homogenates at 37 degrees C in an aqueous medium. Analysis of the soluble extract by gel filtration on Sephadex G-200 showed that up to 80% of the enzyme activity was eluted in a peak which was estimated to consist of molecules of about 74000mol.wt. This peak was called the monomer form of the enzyme. After 3 days at 4 degrees C, the soluble extract was re-analysed and was eluted from the column in four peaks of about 74000, 155000, 360000 and 720000 mol.wt. Since the total activity of the enzyme in these peaks was the same as that in the predominantly monomer elution profile of fresh enzyme, we concluded that the monomer had aggregated, possibly into dimers, tetramers and octomers. Extracts of the enzyme were analysed by polyacrylamide-gel electrophoresis and the resulting multiple bands of enzyme activity on gels were shown to separate according to their molecular sizes, that is by molecular sieving. All these forms had similar susceptibilities to the inhibitors eserine, tetra-isopropyl pyrophosphoramide and compound BW 284c51 [1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide]. Thus the forms of the enzyme in mouse brain which can be detected by gel filtration and polyacrylamide-gel electrophoresis may all be related to a single low-molecular-weight form which aggregates during storage. This supports similar suggestions made for the enzyme in other locations.  相似文献   

10.
H Masui  M Satoh    T Satoh 《Journal of bacteriology》1994,176(6):1624-1629
Spheroplasts prepared from a molybdenum cofactor-deficient mutant of Rhodobacter sphaeroides f. sp. denitrificans secreted dimethyl sulfoxide (DMSO) reductase which had no molybdenum cofactor and therefore no activity, whereas those from wild-type cells secreted the active reductase. The inactive DMSO reductase proteins were separated by nondenaturing electrophoresis into two forms: form I, with the same mobility as the native enzyme, and form II, with slower mobility. Both forms had the same mobility on denaturing gel. Form I and active DMSO reductase had the same profile on gel filtration chromatography. Form II was eluted a little faster than the native enzyme, suggesting that DMSO reductase form II was not an aggregated form but a compactly folded form very similar to the native enzyme. Form II was digested by trypsin and denatured with urea, whereas form I was unaffected, like native DMSO reductase. These results suggested that form II was a partially unfolded but compactly folded apoprotein of DMSO reductase.  相似文献   

11.
1. A previously uncharacterized form of human liver acid beta-galactosidase (EC 3.2.1.23), possibly a dimer of molecular weight 160 000, was resolved by gel filtration. It has the same ability to hydrolyse GM1 ganglioside as the two other acid beta-galactosidase forms. 2. The low-molecular-weight forms of acid beta-galactosidase undergo salt-dependent aggregation. 3. The high-molecular-weight component may consist of the low-molecular-weight forms bound to membrane fragments. It can be converted completely into a mixture of these forms. 4. The neutral beta-galactosidase activity can be resolved into two forms by DEAE-cellulose chromatography. They differ in their response to Cl-ions. 5. A new nomenclature is suggested for the six beta-galactosidases so far found in human liver. 6. The enzymic constituents of the beta-galactosidase bands resolved by electrophoresis were re-examined. The A band contains three components. A two-dimensional electrophoretic procedure for resolving the A band is described. 7. The effect of neuraminidase treatment on the behaviour of beta-galactosidases in various separation systems is examined.  相似文献   

12.
Dextransucrase [EC 2.4.1.5] activity from cell-free culture supernatant of Leuconostoc mesenteroides NRRL B-1299 was purified by (NH4)2SO4 fractionation, adsorption on hydroxyapatite, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The extracellular enzyme was separated into two principal forms, enzymes I and N, and the latter was shown to be an aggregated form of the protomer, enzyme I. Enzymes I and N were both electrophoretically homogeneous and their relative activities reached 820 and 647 times that of the culture supernatant, respectively. On sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis, enzyme N dissociated into the protomer enzyme I, with a molecular weight of 48,000. Enzyme I was gradually converted into enzyme N upon aging, and this conversion was stimulated in the presence of NaCl. The optimum pH and temperature of enzyme I activity were pH 6.0 and 40 degrees, respectively, while those of enzyme N were pH 5.5 and 35 degrees. The Km values of enzymes I and N were 13.9 and 13.1 mM, respectively. Ca2+, Mg2+, Fe2+, and Co2+ stimulated the activity of enzyme N, and EDTA showed a potent inhibitory effect on this enzyme. Moreover, the activity of enzyme N was more effectively stimulated by exogenous dextrans as compared with enzyme I.  相似文献   

13.
1. Slow, spontaneous lysis of Halobacterium cutirubrum in 3 M-KCl yields DNA-dependent RNA polymerase as a complex with DNA that sediments completely at 45 000g. 2. Controlled deoxyribonuclease digestion of the complex, with or without subsequent sonication, releases the enzyme quantitatively in a soluble form that passes through ultrafilters with a molecular-weight exclusion limit of 50 000. 3. Purification of the active ultrafiltrate by gel filtration and hydroxyapatite chromatography gives a high yield of the purified alpha and beta subunits. 4. The low mol.wt. (17 800-19 000) of the soluble enzyme was confirmed by gel filtration and is unchanged by sonication of the DNA-enzyme complex. 5. A new assay applicable to both forms of the enzyme was developed. 6. The bivalent-cation requirement of the soluble form depends on the buffer concentration. 7. Both the DNA-enzyme complex and the low-molecular-weight soluble forms of the polymerase catalyse formation of short RNA chains only.  相似文献   

14.
Two forms of alpha-galactosidase (alpha-d-galactoside galactohydrolase, E.C. 3.2.1.22) which differed in molecular weight were resolved from Cucumis sativus L. leaves. The enzymes were partially purified using ammonium sulfate fractionation, Sephadex gel filtration, and diethylaminoethyl-Sephadex chromatography. The molecular weights of the two forms, by gel filtration, were 50,000 and 25,000. The 50,000-dalton form comprised approximately 84% of the total alpha-galactosidase activity in crude extracts from mature leaves and was purified 132-fold. The partially purified 25,000-molecular weight form rapidly lost activity unless stabilized with 0.2% albumin and accounted for 16% of the total alpha-galactosidase activity in the crude extract. The smaller molecular weight form was not found in older leaves.The two forms were similar in several ways including their pH optima which were 5.2 and 5.5 for the 50,000- and 25,000-dalton form, respectively, and activation energies, which were 15.4 and 18.9 kilocalories per mole for the larger and smaller forms. Both enzymes were inhibited by galactose as well as by excess concentrations of p-nitrophenyl-alpha-d-galactoside sub-strate. K(m) values with this substrate and with raffinose and melibiose were different for each substrate, but similar for both forms of the enzyme. With stachyose, K(m) values were 10 and 30 millimolar for the 50,000- and 25,000- molecular weight forms, respectively.  相似文献   

15.
Three forms (I, II and III) of glucose-6-phosphate dehydrogenase were isolated from mycelium of Aspergillus oryzae grown on ribose as the carbon source, by ion-exchange chromatography. The Km values determined for the three forms with respect to glucose-6-phosphate were nearly identical; however the Km for NADP+ were different and the Vmax for the isoenzymatic form II was higher than those for I and III. Inhibition by NADPH was competitive with respect to NADP+, isoenzyme II showing the highest Ki. The optimum pH for forms I, II and III were 9.0, 8.0 and 8.5, respectively, and form I was more thermostable than the others. The apparent molecular weights, determined by gel filtration, were 92,000, 117,500 and 141,000 for forms I, II and III, respectively.  相似文献   

16.
Rodis P  Hoff JE 《Plant physiology》1984,74(4):907-911
Protein crystals isolated from potato tubers were found to consist of a proteinase inhibitor active against the cysteine proteinases papain, chymopapain, and ficin. The molecular weight as determined by gel filtration at pH 4.3 or by gel electrophoresis in the presence of dodecylsulfate was 80 kilodaltons. When the inhibitor was evaluated at pH 8.4 in a linear concentration (4-30% polyacrylamide) under nondenaturing conditions, it appeared as two bands of approximately 320 to 350 kilodaltons indicating that the inhibitor forms tetrameric aggregates in neutral or weakly alkaline media, while the monomeric form predominates under acidic conditions. Gel filtration in the presence of varying amounts of papain suggested that the monomer combines with four papain molecules. The inhibitor contains no cystine.  相似文献   

17.
1) Two forms of acid beta-galactosidase [EC 3.1.23] with different molecular weights catalyzing the hydrolysis of GM1-ganglioside and p-nitrophenyl-beta-D-galactoside were separated and purified from porcine spleen. 2) The apparent molecular weights were 400,000-600,000 and 70,000-74,000 for the high (termed Am form) and low (termed A1 form) molecular weight forms, respectively. 3) On examination by sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis, both forms of the enzyme had a common protein band of molecular weight 63,000, and the Am form showed three additional protein bands with molecular weights of 31,000, 21,000, and 20,000. 4) Both forms of the enzyme had similar catalytic functions with regard to pH-optimum, Km, substrate specificity and sensitivity to substrate analogues and other substances such as detergents, bovine serum albumin (BSA) and NaCl. 5) Both forms of the enzyme were fairly stable upon preincubation at 45 degrees C at acidic pH (pH 4.5), but lost their activities at neutral pH (pH 7.0). 6) The A1 form was a monomer at neutral pH (pH 7.0) and formed a dimer at acidic pH (pH 4.5). However, most of the Am form could not be converted to a dimeric form on gel filtration at acidic pH.  相似文献   

18.
Abstract: Affinity chromatography has been used for rapid and high-yield purification of synenkephalin (proenkephalin 1 -70) containing peptides present in bovine adrenal medulla (BAM) chromaffin granular lysate. A column of CN-Br-activated Sepharose 4B coupled to synenkephalin antiserum bound synenkephalin immunoreactivity which was eluted by a stepwise gradient of 50 mM ammonium acetate containing 20% (vol/vol) acetonitrile over the pH range 7–3. Synenkephalin immunoreactivity emerged as two peaks, eluting at pH 5.5 and 4.5. Characterization of the two peaks by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting indicated that the pH 5.5 peak contained principally low-molecular-weight proenkephalin species (8.6 and 12.6 kilodaltons), whereas the pH 4.5 peak contained, in addition, high-molecular-weight proenkephalin species (18.2 and 23.3 kilodaltons). The 8.6- and 12.6- kilodalton species were isolated from the pH 5.5 peak by TSK gel filtration HPLC, whereas the pH 4.5 peak was further purified by passage over successive affinity columns coupled to antiserum against BAM 22P (proenkephalin 182–203) and [Met5]-enkephalin-Arg6-Gly7-Leu8. The former column retains the 23.3-kilodalton species, whereas the latter column retains the 18.2-kilodalton species. The 23.3- kilodalton peptide represents a novel putative proenkephalin intermediate (proenkephalin-1–206), containing [Leu5]- enkephalin at the C-terminus.  相似文献   

19.
Multiple forms of an aminopeptidase hydrolysing L-alanine- and various other amino acid-beta-naphthylamides in bovine seminal vesicle secretion were studied after fractionation on gel filtration, anion exchange chromatography and chromatofocusing. Two forms of the enzyme were found in all these fractionations: one with a high molecular weight was aggregated or particle-bound and the other had a molecular weight of about 237,000. The high-molecular-weight form dissociated with Triton X-100 via an intermediate into the basic enzyme form with concurrent change in the pI and anionic sites. The basic form of the enzyme differed from the high-molecular-weight forms in substrate preference, response to some modifiers, thermal stability and kinetic constants.  相似文献   

20.
1. The distribution of phosphatidylinositol3, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate hydrolysis or phosphatidylinositol-specific phospholipase C (PI-PLC), activity in the bull reproductive system showed the highest specific activity in the isolated spermatozoa (SZ) followed by testis and different epididymal segments. Both the head and tail fractions of SZ were active. 2. The optimal solubilization of the enzyme from SZ was obtained with 0.2% Triton X-100 or at 0.05% detergent concentration when combined with a 60 sec sonication. The sucrose gradient centrifugation showed that PI-PLC was enriched in membrane fraction distinct from mitochondria and acrosomes. 3. The enzyme was purified by ammonium sulphate precipitation and fractionations by hydrophobic interaction chromatography, gel filtration, Con A-Sepharose affinity and chromatofocusing columns. The purified enzyme was able to hydrolyse all phosphatidylinositol substrates with optimum at pH 7.0 and activation by Ca2+, Cd2+ and Mn2+ but not phospholipids lacking the inositol residue. 4. In PAGE (8-25% gradient) the purified (aggregated) enzyme did not enter the gel. In SDS-PAGE two closely located bands were found with Mr-values of 15,000 and 18,000. Isoelectric focusing showed a wide band at pl 4.5-5.1. 5. Gel filtration resulted in a broad elution peak indicating multiple molecular forms (aggregates); the basic form had an apparent molecular weight of 100,000. The binding of the enzyme to Con A-Sepharose indicated that the enzyme is a glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号