首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism.  相似文献   

3.
Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa, each possessing a 5-enolpyruvylshikimate 3-phosphate synthase that is sensitive to inhibition by glyphosate [N-(phosphonomethyl)glycine], provide a good cross-section of organisms exemplifying the biochemical diversity of the aromatic pathway targeted by this potent antimicrobial compound. The pattern of growth inhibition, the alteration in levels of aromatic-pathway enzymes, and the accumulation of early-pathway metabolites after the addition of glyphosate were distinctive for each organism. Substantial intracellular shikimate-3-phosphate accumulated in response to glyphosate treatment in all three organisms. Both E. coli and P. aeruginosa, but not B. subtilis, accumulated near-millimolar levels of shikimate-3-phosphate in the culture medium. Intracellular backup of common-pathway precursors of shikimate-3-phosphate was substantial in B. subtilis, moderate in P. aeruginosa, and not detectable in E. coli. The full complement of aromatic amino acids prevented growth inhibition and metabolite accumulation in E. coli and P. aeruginosa where amino acid end products directly control early-pathway enzyme activity. In contrast, the initial prevention of growth inhibition in the presence of aromatic amino acids in B. subtilis was succeeded by progressively greater growth inhibition that correlated with rapid metabolite accumulation. In B. subtilis glyphosate can decrease prephenate concentrations sufficiently to uncouple the sequentially acting loops of feedback inhibition that ordinarily link end product excess to feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase by prephenate. The consequential unrestrained entry is an energy-rich substrates into the aromatic pathway, even in the presence of aromatic amino acid end products, is an energy drain that potentially accounts for the inability of end products to fully reverse glyphosate inhibition in B. subtilis. Even in E. coli after glyphosate inhibition and metabolite accumulation were allowed to become fully established, a transient period where end products were capable of only partial reversal of growth inhibition occurred. The distinctive metabolism produced by dissimilation of different carbon sources also profound effects upon glyphosate sensitivity.  相似文献   

4.
Different glucose transport systems are examined for their impact on phosphoenolpyruvate availability as reflected by the yields of 3-dehydroshikimic acid and byproducts 3-deoxy-d-arabino-heptulosonic acid, 3-dehydroquinic acid, and gallic acid synthesized by Escherichia coli from glucose. 3-Dehydroshikimic acid is an advanced shikimate pathway intermediate in the syntheses of a spectrum of commodity, pseudocommodity, and fine chemicals. All constructs carried plasmid aroF(FBR) and tktA inserts encoding, respectively, a feedback-insensitive isozyme of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase and transketolase. Reliance on the native E. coli phosphoenolpyruvate:carbohydrate phosphotransferase system for glucose transport led in 48 h to the synthesis of 3-dehydroshikimic acid (49 g/L) and shikimate pathway byproducts in a total yield of 33% (mol/mol). Use of heterologously expressed Zymomonas mobilis glf-encoded glucose facilitator and glk-encoded glucokinase resulted in the synthesis in 48 h of 3-dehydroshikimic acid (60 g/L) and shikimate pathway byproducts in a total yield of 41% (mol/mol). Recruitment of native E. coli galP-encoded galactose permease for glucose transport required 60 h to synthesize 3-dehydroshikimic acid (60 g/L) and shikimate pathway byproducts in a total yield of 43% (mol/mol). Direct comparison of the impact of altered glucose transport on the yields of shikimate pathway products synthesized by E. coli has been previously hampered by different experimental designs and culturing conditions. In this study, the same product and byproduct mixture synthesized by E. coli constructs derived from the same progenitor strain is used to compare strategies for increasing phosphoenolpyruvate availability. Constructs are cultured under the same set of fermentor-controlled conditions.  相似文献   

5.
A series of recombinant Escherichia coli strains have been constructed and evaluated for their ability to synthesize p-hydroxybenzoic acid from glucose under fed-batch fermentor conditions. The maximum concentration of p-hydroxybenzoic acid synthesized was 12 g/L and corresponded to a yield of 13% (mol/mol). Synthesis of p-hydroxybenzoic acid began with direction of increased carbon flow into the common pathway of aromatic amino acid biosynthesis. This was accomplished in all constructs with overexpression of a feedback-insensitive isozyme of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Expression levels of enzymes in the common pathway of aromatic amino acid biosynthesis were also increased in all constructs to deliver increased carbon flow from the beginning to the end of the common pathway. A previously unreported inhibition of 3-dehydroquinate synthase by L-tyrosine was discovered to be a significant impediment to the flow of carbon through the common pathway. Chorismic acid, the last metabolite of the common pathway, was converted into p-hydroxybenzoic acid by ubiC-encoded chorismate lyase. Constructs differed in the strategy used for overexpression of chorismate lyase and also differed as to whether mutations were present in the host E. coli to inactivate other chorismate-utilizing enzymes. Use of overexpressed chorismate lyase to increase the rate of chorismic acid aromatization was mitigated by attendant decreases in the specific activity of DAHP synthase and feedback inhibition caused by p-hydroxybenzoic acid. The toxicity of p-hydroxybenzoic acid towards E. coli metabolism and growth was also evaluated.  相似文献   

6.
7.
8.
Aromatic metabolites in Escherichia coli and other microorganisms are derived from two common precursors: phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P). During growth on glucose, the levels of both E4P and PEP are insufficient for high throughput of aromatics because of the low carbon flux through the pentose pathway and the use of PEP in the phosphotransferase system. It has been shown that transketolase and PEP synthase are effective in relieving this limitation and promoting high throughput of aromatics. To determine whether transaldolase, another E4P-producing enzyme, is also a limiting factor in directing carbon flux to the aromatic pathway, E. coli transaldolase gene (tal) was cloned and overexpressed in an aroB strain which excretes 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP), the first intermediate in the aromatic pathway. We found that overexpression of transaldolase did significantly increase the production of DAHP from glucose. This result further supports the contention that the supply of E4P is limiting when glucose is the carbon source. However, overexpression of transaldolase in strains which already overexpress transketolase did not show a further increase in production of aromatics. This result was attributed to the saturation of E4P supply when TktA was overexpressed. The flux control of DAHP production was discussed on the basis of Metabolic Control Analysis. (c) 1997 John Wiley & Sons, Inc.  相似文献   

9.
Transketolase, one of the enzymes in the nonoxidative branch of the pentose phosphate pathway, operates to shuttle ribose 5-phosphate and glycolytic intermediates together with transaldolase, and might be involved in the availability of ribose 5-phosphate, a precursor of nucleotide biosynthesis. The tkt and tal genes encoding transketolase and transaldolase, respectively, were cloned from the typical nucleotide- and nucleoside-producing organism Corynebacterium ammoniagenes by a PCR approach using oligonucleotide primers derived from conserved regions of each amino acid sequence from other organisms. Enzymatic and molecular analyses revealed that the two genes were clustered on the genome together with the glucose 6-phosphate dehydrogenase gene (zwf). The effect of transketolase modifications on the production of inosine and 5'-xanthylic acid was investigated in industrial strains of C. ammoniagenes. Multiple copies of plasmid-borne tkt caused about tenfold increases in transketolase activity and resulted in 10-20% decreased yields of products relative to the parents. In contrast, site-specific disruption of tkt enabled both producers to accumulate 10-30% more products concurrently with a complete loss of transketolase activity and the expected phenotype of shikimate auxotrophy. These results indicate that transketolase normally shunts ribose 5-phosphate back into glycolysis in these biosynthetic processes and interception of this shunt allows cells to redirect carbon flux through the oxidative pentose pathway from the intermediate towards the purine-nucleotide pathway.  相似文献   

10.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

11.
Genetic engineering of microbes for commercial metabolite production traditionally has sought to alter the levels and/or intrinsic activities of key enzymes in relevant biosynthetic pathway(s). Microorganisms exploit similar strategies for flux control, but also coordinate flux through sets of related pathways by using global regulatory circuits. We have engineered a global regulatory system of Escherichia coli, Csr (carbon storage regulator), to increase precursor for aromatic amino acid biosynthesis. Disruption of csrA increases gluconeogenesis, decreases glycolysis, and thus elevates phosphoenolpyruvate, a limiting precursor of aromatics. A strain in which the aromatic (shikimate) pathway had been optimized produced twofold more phenylalanine when csrA was disrupted. Overexpression of tktA (transketolase) to increase the other precursor, erythrose-4-phosphate, yielded ∼1.4-fold enhancement, while both changes were additive. These effects of csrA were not mediated by increasing the regulatory enzymes of phenylalanine biosynthesis. This study introduces the concept of “global metabolic engineering” for second-generation strain improvement. Received: 25 October 2000 / Accepted: 8 December 2000  相似文献   

12.
莽草酸是大肠杆菌合成芳香族氨基酸的中间代谢物,也是抗流感药物"达菲"的重要合成前体。合成莽草酸需要截断莽草酸途径,导致芳香族氨基酸无法合成,因此面临细胞生长受到抑制的问题。使用动态调控策略通过将细胞生长和莽草酸的合成相互分离,可以提高菌株的生产性能。通过使用生长偶联型启动子和降解决定子(Degrons),组建动态分子开关。利用该动态分子开关实现细胞生长与莽草酸合成分离,在5L发酵罐中经过72h发酵得到了14.33g/L的莽草酸。结果表明,这种动态分子开关可以通过调控靶蛋白丰度来改变碳流量平衡,使菌株获得更优秀的生产性能。  相似文献   

13.
To determine the in vivo fluxes of the central metabolism we have developed a comprehensive approach exclusively based on the fundamental enzyme reactions known to be present, the fate of the carbon atoms of individual reactions, and the metabolite balance of the culture. No information on the energy balance is required, nor information on enzyme activities, or the directionalities of reactions. Our approach combines the power of (1)H-detected (13)C nuclear magnetic resonance spectroscopy to follow individual carbons with the simplicity of establishing carbon balances of bacterial cultures. We grew a lysine-producing strain of Corynebacterium glutamicum to the metabolic and isotopic steady state with [1-(13)C]glucose and determined the fractional enrichments in 27 carbon atoms of 11 amino acids isolated from the cell. Since precursor metabolites of the central metabolism are incorporated in an exactly defined manner in the carbon skeleton of amino acids, the fractional enrichments in carbons of precursor metabolites (oxaloacetate, glyceraldehyde 3-phosphate, erythrose 4-phosphate, etc.) became directly accessible. A concise and generally applicable mathematical model was established using matrix calculus to express all metabolite mass and carbon labeling balances. An appropriate all-purpose software for the iterative solution of the equations is supplied. Applying this comprehensive methodology to C. glutamicum, all major fluxes within the central metabolism were determined. The result is that the flux through the pentose phosphate pathway is 66.4% (relative to the glucose input flux of 1.49 mmol/g dry weight h), that of entry into the tricarboxylic acid cycle 62.2%, and the contribution of the succinylase pathway of lysine synthesis 13.7%. Due to the large amount and high quality of measured data in vivo exchange reactions could also be quantitated with particularly high exchange rates within the pentose phosphate pathway for the ribose 5-phosphate transketolase reaction. Moreover, the total net flux of the anaplerotic reactions was quantitated as 38.0%. Most importantly, we found that in vivo one component within these anaplerotic reactions is a back flux from the carbon 4 units of the tricarboxylic acid cycle to the carbon 3 units of glycolysis of 30.6%. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
15.
Corynebacterium glutamicum with the ability to simultaneously utilize glucose/pentose mixed sugars was metabolically engineered to overproduce shikimate, a valuable hydroaromatic compound used as a starting material for the synthesis of the anti-influenza drug oseltamivir. To achieve this, the shikimate kinase and other potential metabolic activities for the consumption of shikimate and its precursor dehydroshikimate were inactivated. Carbon flux toward shikimate synthesis was enhanced by overexpression of genes for the shikimate pathway and the non-oxidative pentose phosphate pathway. Subsequently, to improve the availability of the key aromatics precursor phosphoenolpyruvate (PEP) toward shikimate synthesis, the PEP: sugar phosphotransferase system (PTS) was inactivated and an endogenous myo-inositol transporter IolT1 and glucokinases were overexpressed. Unexpectedly, the resultant non-PTS strain accumulated 1,3-dihydroxyacetone (DHA) and glycerol as major byproducts. This observation and metabolome analysis identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-catalyzed reaction as a limiting step in glycolysis. Consistently, overexpression of GAPDH significantly stimulated both glucose consumption and shikimate production. Blockage of the DHA synthesis further improved shikimate yield. We applied an aerobic, growth-arrested and high-density cell reaction to the shikimate production by the resulting strain and notably achieved the highest shikimate titer (141 g/l) and a yield (51% (mol/mol)) from glucose reported to date after 48 h in minimal medium lacking nutrients required for cell growth. Moreover, comparable shikimate productivity could be attained through simultaneous utilization of glucose, xylose, and arabinose, enabling efficient shikimate production from lignocellulosic feedstocks. These findings demonstrate that C. glutamicum has significant potential for the production of shikimate and derived aromatic compounds.  相似文献   

16.
Protocatechuic acid (3, 4-dihydroxybenzoic acid, PCA) is a natural bioactive phenolic acid potentially valuable as a pharmaceutical raw material owing to its diverse pharmacological activities. Corynebacterium glutamicum forms PCA as a key intermediate in a native pathway to assimilate shikimate/quinate through direct conversion of the shikimate pathway intermediate 3-dehydroshikimate (DHS), which is catalyzed by qsuB-encoded DHS dehydratase (the DHS pathway). PCA can also be formed via an alternate pathway extending from chorismate by introducing heterologous chorismate pyruvate lyase that converts chorismate into 4-hydroxybenzoate (4-HBA), which is then converted into PCA catalyzed by endogenous 4-HBA 3-hydroxylase (the 4-HBA pathway). In this study, we generated three plasmid-free C. glutamicum strains overproducing PCA based on the markerless chromosomal recombination by engineering each or both of the above mentioned two PCA-biosynthetic pathways combined with engineering of the host metabolism to enhance the shikimate pathway flux and to block PCA consumption. Aerobic growth-arrested cell reactions were performed using the resulting engineered strains, which revealed that strains dependent on either the DHS or 4-HBA pathway as the sole PCA-biosynthetic route produced 43.8 and 26.2 g/L of PCA from glucose with a yield of 35.3% and 10.0% (mol/mol), respectively, indicating that PCA production through the DHS pathway is significantly efficient compared to that produced through the 4-HBA pathway. Remarkably, a strain simultaneously using both DHS and 4-HBA pathways achieved the highest reported PCA productivity of 82.7 g/L with a yield of 32.8% (mol/mol) from glucose in growth-arrested cell reaction. These results indicated that simultaneous engineering of both DHS and 4-HBA pathways is an efficient method for PCA production. The generated PCA-overproducing strain is plasmid-free and does not require supplementation of aromatic amino acids and vitamins due to the intact shikimate pathway, thereby representing a promising platform for the industrial bioproduction of PCA and derived chemicals from renewable sugars.  相似文献   

17.
5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase, EC 2.5.1.19) is the sixth enzyme in the shikimate pathway which is essential for the synthesis of aromatic amino acids and many secondary metabolites. The enzyme is widely involved in glyphosate tolerant transgenic plants because it is the primary target of the nonselective herbicide glyphosate. In this study, the Dunaliella salina EPSP synthase gene was cloned by RT-PCR approach. It contains an open reading frame encoding a protein of 514 amino acids with a calculated molecular weight of 54.6 KDa. The derived amino acid sequence showed high homology with other EPSP synthases. The Dunaliella salina EPSP synthase gene was expressed in Escherichia coli and the recombinant EPSP synthase were identified by functional complementation assay.  相似文献   

18.
The substrate specificity of tryptophan (Trp) decarboxylase (TDC) for Trp and tyrosine (Tyr) decarboxylase (TYDC) for Tyr was used to modify the in vivo pools of these amino acids in transgenic tobacco. Expression of TDC and TYDC was shown to deplete the levels of Trp and Tyr, respectively, during seedling development. The creation of artificial metabolic sinks for Trp and Tyr also drastically affected the levels of phenylalanine, as well as those of the non-aromatic amino acids methionine, valine, and leucine. Transgenic seedlings also displayed a root-curling phenotype that directly correlated with the depletion of the Trp pool. Non-transformed control seedlings could be induced to display this phenotype after treatment with inhibitors of auxin translocation such as 2,3,5-triiodobenzoic acid or N-1-naphthylphthalamic acid. The depletion of aromatic amino acids was also correlated with increases in the activities of the shikimate and phenylpropanoid pathways in older, light-treated transgenic seedlings expressing TDC, TYDC, or both. These results provide in vivo confirmation that aromatic amino acids exert regulatory feedback control over carbon flux through the shikimate pathway, as well as affecting pathways outside of aromatic amino acid biosynthesis.  相似文献   

19.
The shikimate pathway, including seven enzymatic steps for production of chorismate via shikimate from phosphoenolpyruvate and erythrose-4-phosphate, is common in various organisms for the biosynthesis of not only aromatic amino acids but also most biogenic benzene derivatives. 3-Amino-4-hydroxybenzoic acid (3,4-AHBA) is a benzene derivative serving as a precursor for several secondary metabolites produced by Streptomyces, including grixazone produced by Streptomyces griseus. Our study on the biosynthesis pathway of grixazone led to identification of the biosynthesis pathway of 3,4-AHBA from two primary metabolites. Two genes, griI and griH, within the grixazone biosynthesis gene cluster were found to be responsible for the biosynthesis of 3,4-AHBA; the two genes conferred the in vivo production of 3,4-AHBA even on Escherichia coli. In vitro analysis showed that GriI catalyzed aldol condensation between two primary metabolites, l-aspartate-4-semialdehyde and dihydroxyacetone phosphate, to form a 7-carbon product, 2-amino-4,5-dihydroxy-6-one-heptanoic acid-7-phosphate, which was subsequently converted to 3,4-AHBA by GriH. The latter reaction required Mn(2+) ion but not any cofactors involved in reduction or oxidation. This pathway is independent of the shikimate pathway, representing a novel, simple enzyme system responsible for the synthesis of a benzene ring from the C(3) and C(4) primary metabolites.  相似文献   

20.
Combinatorial overexpression of aromatic amino acid biosynthesis (AAAB) genes in the L-tyrosine producing Escherichia coli strains T1 and T2 was employed to search for AAAB reactions limiting L-tyrosine production. All AAAB genes except aroG and tyrA, which were substituted by their feedback resistant derivatives in the host strains, were cloned and overexpressed. A total of 72 different strains overexpressing various AAAB gene combinations were generated and from those strains with improved phenotype, enzymatic bottlenecks of the AAAB pathway could be inferred. The two major gene overexpression targets for increased L-tyrosine production in E. coli were ydiB and aroK, coding for a shikimate dehydrogenase and a shikimate kinase, respectively, and the combination of ydiB and aroK for overexpression resulted in the best L-tyrosine producing strains in this study, yielding 45% for strain T1 and 26% for strain T2, respectively, higher L-tyrosine titers. Interestingly, overexpression studies with combinations of more than one gene revealed that new gene targets could be identified when overexpessed together with other genes but not alone as single gene overexpression. For example, tyrB encoding the last enzyme of the AAAB pathway, an aromatic amino acid transaminase, improved L-tyrosine production significantly when co-overexpressed together with ydiB or aroK, but not when overexpressed alone. It is also noteworthy that E. coli T1, which generally yielded less L-tyrosine, was amenable to greater improvements than strain T2, i.e. E. coli T1 exhibited generally more space for phenotype improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号