首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen isolates of Klebsiella aerogenes, K. pneumoniae, K. oxytocum and K. edwardsii were examined for their ability to express iron-regulated outer membrane proteins (IROMPs) and high affinity iron-chelating agents (siderophores). In response to iron deprivation, all strains induced at least 4 IROMPs in the approximate Mr range 70 000–85 000 and the phenolate siderophore enterobactin. Six strains also produced the hydroxamate siderophore aerobactin. The Klebsiella enterobactin receptor was identified as an 81 000 Mr iron-repressible outer membrane (OM) protein which appears to be highly conserved and shows considerable antigenic homology with that of Escherichia coli.  相似文献   

2.
A total of 46 environmental pseudomonads, together with six type strains, were examined for their siderophore-producing activity. All strains were able to grow under iron-limiting conditions, gave orange halos in the CAS agar assay, and produced hydroxamates, and some of them also produced phenolate-type compounds. Bioassays showed that all strains, except Pseudomonas aeruginosa, promoted growth of mutant strain Arthrobacter flavescens JG-9, deficient in hydroxamate production, and some of them promoted growth of Salmonella typhimurium enb-1, which requires enterobactin for growth. The presence of iron-regulated outer membrane proteins was observed, the molecular size of the main induced proteins ranged between 76 and 93 kDa.  相似文献   

3.
When cells of Synechococcus PCC7942 were subjected to either iron or magnesium limitation, there was an appearance of specific proteins in the outer membrane (isolated as the cell wall fraction). Under iron limitation outer membrane polypeptides of M r 92000, 48000–50000 and 35000 appeared. Specific iron-limited outer membrane proteins (IRMPs) of M r 52000 and 36000 were also induced in iron-limited cultures of Synechocystis PCC6308. Under magnesium limitation polypeptides of M r 80000, 67000, 62000, 50000, 28000 and 25000 appeared in the outer membrane. phosphate limitation caused minor changes in the outer membrane protein pattern, with polypeptides of M r 32000 and one of over 100000 being induced, whereas calcium limitation had no apparent affect.Abbreviations EDDA ethylenediaminedihydroxyphenyl acetic acid - IRMP iron-regulated outer membrane protein - HEPES N-2-hydroxyethyl-piperazine-N-2-ethane sulphonic acid - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride  相似文献   

4.
Expression of hydroxamate and phenolate siderophores by Shigella flexneri.   总被引:26,自引:11,他引:15  
Shigella flexneri strains were assayed for the ability to synthesize and utilize phenolate and hydroxamate siderophores. The hydroxamate aerobactin was synthesized by all isolates tested, whereas phenolates were only rarely produced. Expression of aerobactin was accompanied by production of a single iron-regulated outer membrane protein (Mr = 74,000). This protein was not produced by a mutant defective in aerobactin utilization and may serve as the aerobactin receptor. Phenolate (enterobactin)-producing strains synthesized three additional outer membrane proteins (Mr = 74,000, 81,000, and 83,000) in response to iron starvation. These proteins are the same apparent size as those produced by Escherichia coli K-12 strains. Ent sequences are apparently present in strains which do not synthesize this compound. Although normally silent, ent genes can be activated in Ent- strains to produce Ent+ variants. These laboratory variants are phenotypically indistinguishable from clinical Ent+ isolates.  相似文献   

5.
The effect of growth at 42 degrees C on the different components of the siderophore-mediated iron transport that are induced by iron limitation in Azospirillum brasilense was examined. Biosynthesis of the siderophore spirilobactin was strongly inhibited (20-fold) by growth at 42 degrees C, whereas the transport of iron by the ferric-spirilobactin transport system and the induction of the iron-regulated outer membrane proteins were unaffected.  相似文献   

6.
Bacteroides ovatus NCTC 11153 was grown in a two-stage continuous culture system at various growth rates (vessel 1, D = 0.06 to 0.19 h-1; vessel 2, D = 0.03 to 0.09 h-1) on media containing mixtures of starch and arabinogalactan as carbon sources. The cell-associated enzyme activities needed to hydrolyze both substrates (amylase, arabinogalactanase, alpha-glucosidase, beta-galactosidase, and alpha-arabinofuranosidase) were variously influenced by growth rate and polysaccharide availability but were detected under all growth conditions tested. Measurements of residual carbohydrate in spent culture media showed that both polysaccharides were co-utilized during growth under putative C-limited conditions. The arabinogalactan was partly depolymerized in N-limited chemostats, and significant amounts of arabinose- and galactose-containing oligosaccharides accumulated in the cultures, indicating that starch was being preferentially utilized. Acetate, propionate, and succinate were the major fermentation products formed by C-limited bacteria, but under N limitation, lactate was also produced. Molar ratios of succinate increased concomitantly with the dilution rate in C-limited chemostats, whereas molar ratios of propionate decreased. During N-limited growth, however, decarboxylation of succinate to propionate was relatively independent of growth rate. Cell viability was higher in C-limited cultures compared with those grown under N limitation and was greatest at high dilution rates, irrespective of nutrient limitation.  相似文献   

7.
Bacteroides ovatus NCTC 11153 was grown in a two-stage continuous culture system at various growth rates (vessel 1, D = 0.06 to 0.19 h-1; vessel 2, D = 0.03 to 0.09 h-1) on media containing mixtures of starch and arabinogalactan as carbon sources. The cell-associated enzyme activities needed to hydrolyze both substrates (amylase, arabinogalactanase, alpha-glucosidase, beta-galactosidase, and alpha-arabinofuranosidase) were variously influenced by growth rate and polysaccharide availability but were detected under all growth conditions tested. Measurements of residual carbohydrate in spent culture media showed that both polysaccharides were co-utilized during growth under putative C-limited conditions. The arabinogalactan was partly depolymerized in N-limited chemostats, and significant amounts of arabinose- and galactose-containing oligosaccharides accumulated in the cultures, indicating that starch was being preferentially utilized. Acetate, propionate, and succinate were the major fermentation products formed by C-limited bacteria, but under N limitation, lactate was also produced. Molar ratios of succinate increased concomitantly with the dilution rate in C-limited chemostats, whereas molar ratios of propionate decreased. During N-limited growth, however, decarboxylation of succinate to propionate was relatively independent of growth rate. Cell viability was higher in C-limited cultures compared with those grown under N limitation and was greatest at high dilution rates, irrespective of nutrient limitation.  相似文献   

8.
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes.  相似文献   

9.
We describe in this work a new iron uptake system encoded by chromosomal genes in pathogenic strains of Vibrio anguillarum. This iron uptake system differs from the plasmid-encoded anguibactin-mediated system present in certain strains of V. anguillarum in several properties. The siderophore anguibactin is not utilized as an external siderophore, and although characteristic outer membrane proteins are synthesized under iron-limiting conditions, these are not related to the plasmid-mediated outer membrane protein OM2 associated with ferric anguibactin transport. Furthermore, the siderophore produced by the plasmidless strains may be functionally related to enterobactin as demonstrated by bioassays with enterobactin-deficient mutants, although its behavior under various chemical treatments suggested major differences from that siderophore. Hybridization experiments suggested that the V. anguillarum chromosome-mediated iron uptake system is unrelated genetically to either the anguibactin or enterobactin-associated iron assimilation systems.  相似文献   

10.
11.
Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7   总被引:9,自引:5,他引:4  
In this study, we identified the iron-transport systems of Escherichia coli O157:H7 strain EDL933. This strain synthesized and transported enterobactin and had a ferric citrate transport system but lacked the ability to produce or use aerobactin. It used haem and haemoglobin, but not transferrin or lactoferrin, as iron sources. We cloned the gene encoding an iron-regulated haem-transport protein and showed that this E. coli haem-utilization gene ( chuA ) encoded a 69 kDa outer membrane protein that was synthesized in response to iron limitation. Expression of this protein in a laboratory strain of E. coli was sufficient for utilization of haem or haemoglobin as iron sources. Mutation of the chromosomal chuA and tonB genes in E. coli O157:H7 demonstrated that the utilization of haemin and haemoglobin was ChuA- and TonB-dependent. Nucleotide sequence analysis of chuA revealed features characteristic of TonB-dependentFur-regulated, outer membrane iron-transport proteins. It was highly homologous to the shuA gene of Shigella dysenteriae and less closely related to hemR of Yersinia enterocolitica and hmuR of Yersinia pestis . A conserved Fur box was identified upstream of the chuA gene, and regulation by Fur was confirmed.  相似文献   

12.
FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.  相似文献   

13.
The purpose of this investigation was to determine whether Madurella mycetomatis, the most frequent agent of eumycotic mycetomas, produces siderophores and synthesizes new outer membrane proteins under iron-starvation conditions. Siderophore production, only of the hydroxamate type, was demonstrated in all nine strains tested. It was regulated by extracellular iron concentrations. Under iron-restricted conditions, M. mycetomatis expressed various outer membrane iron-regulated proteins, particularly of 24-kilodalton, that may participate in iron metabolism.  相似文献   

14.
Hemin has been implicated in the pathogenesis of the oral pathogen, Bacteroides gingivalis. In order to elucidate the role of hemin (iron) in the growth and expression of outer membrane proteins, B. gingivalis strain W50 was grown with and without hemin to induce iron-limitation. Cells grew slower under iron stress and growth was completely inhibited in the absence of added hemin. The outer membrane protein profiles of B. gingivalis grown under iron-replete and iron-restricted conditions were studied by extrinsic radiolabelling with [125I] and polyacrylamide gel-electrophoresis. The induction of 10 surface proteins, with apparent molecular weights of 26, 29, 50, 56, 58, 60, 62, 71, 77, and 80 Kd, was observed in B. gingivalis grown under iron-restricted conditions. These proteins were repressed under iron-replete conditions. We postulate the involvement of the iron-regulated proteins in hemin uptake and virulence in B. gingivalis.  相似文献   

15.
Vibrio cholerae produces the novel phenolate siderophore vibriobactin and several outer membrane proteins in response to iron starvation. To determine whether any of these iron-regulated outer membrane proteins serves as the receptor for vibriobactin, the classical V. cholerae strain 0395 was mutagenized by using TnphoA, and iron-regulated fusions were analyzed for vibriobactin transport. One mutant, MBG14, was unable to bind or utilize exogenous vibriobactin and did not grow in low-iron medium. However, synthesis of the siderophore and transport of other iron complexes, including ferrichrome, hemin, and ferric citrate, were unaffected in MBG14. Analysis of membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the loss from the mutant of a 74-kDa iron-regulated outer membrane protein present in the parental strain when grown in iron-limiting conditions. This protein partitioned into the detergent phase during Triton X-114 extraction, suggesting that it is a hydrophobic membrane protein. DNA sequences encoding the gene into which TnphoA had inserted, designated viuA (vibriobactin uptake), restored the wild-type phenotype to the mutant; the complemented mutant expressed the 74-kDa outer membrane protein under iron-limiting conditions and possessed normal vibriobactin binding and uptake. These data indicate that the 74-kDa outer membrane protein of V. cholerae serves as the vibriobactin receptor.  相似文献   

16.
C Amaro  R Aznar  E Alcaide    M L Lemos 《Applied microbiology》1990,56(8):2410-2416
A total of 156 strains of Vibrio cholerae non-O1 from aquatic origins were examined for the presence of iron uptake mechanisms and compared with O1 strains and other Vibrio species. All non-O1 strains were able to grow in iron-limiting conditions, with MICs of ethylenediaminedi (O-hydroxyphenylacetic acid) ranging from 20 microM to 2 mM. The production of siderophores was demonstrated by growth in chrome azurol S agar and cross-feeding assays. All strains produced phenolate-type compounds, as assessed by the chemical tests and by bioassays with Salmonella typhimurium enb-7. Some of the strains also promoted the growth of S. typhimurium enb-1 (which can use only enterobactin as a siderophore) as well as some strains of Vibrio anguillarum deficient in the anguibactin-mediated system. The chromatographic analyses and absorption spectra of siderophores extracted from culture supernatants suggest that vibriobactin may be produced by the strains examined. Interestingly, some strains also produced hydroxamate-type compounds, as determined by chemical tests, and were able to promote the growth of an aerobactin-deficient strain of Escherichia coli. These results were confirmed by the absorption spectra and chromatographic analyses of the culture extracts. The synthesis of iron-regulated outer membrane proteins in representative strains was also examined. The molecular sizes of the main induced proteins ranged from 70 to 78 kilodaltons. These results indicate that several iron uptake mechanisms which could be involved in environmental survival and pathogenicity are present in environmental V. cholerae non-O1 strains.  相似文献   

17.
A total of 156 strains of Vibrio cholerae non-O1 from aquatic origins were examined for the presence of iron uptake mechanisms and compared with O1 strains and other Vibrio species. All non-O1 strains were able to grow in iron-limiting conditions, with MICs of ethylenediaminedi (O-hydroxyphenylacetic acid) ranging from 20 microM to 2 mM. The production of siderophores was demonstrated by growth in chrome azurol S agar and cross-feeding assays. All strains produced phenolate-type compounds, as assessed by the chemical tests and by bioassays with Salmonella typhimurium enb-7. Some of the strains also promoted the growth of S. typhimurium enb-1 (which can use only enterobactin as a siderophore) as well as some strains of Vibrio anguillarum deficient in the anguibactin-mediated system. The chromatographic analyses and absorption spectra of siderophores extracted from culture supernatants suggest that vibriobactin may be produced by the strains examined. Interestingly, some strains also produced hydroxamate-type compounds, as determined by chemical tests, and were able to promote the growth of an aerobactin-deficient strain of Escherichia coli. These results were confirmed by the absorption spectra and chromatographic analyses of the culture extracts. The synthesis of iron-regulated outer membrane proteins in representative strains was also examined. The molecular sizes of the main induced proteins ranged from 70 to 78 kilodaltons. These results indicate that several iron uptake mechanisms which could be involved in environmental survival and pathogenicity are present in environmental V. cholerae non-O1 strains.  相似文献   

18.
19.
An in vitro chemostat system was used to study the growth and the expression of iron-regulated outer-membrane proteins (IROMPs) by biofilm cells of Pseudomonas aeruginosa cultivated under conditions of iron limitation. The population of the planktonic cells decreased when the dilution rate was increased. At a dilution rate of 0.05 h-1, the populations of planktonic cells of both mucoid and nonmucoid P. aeruginosa were 3 x 10(9) cells/mL. This value dropped to 5 x 10(6) cells/mL when the dilution rate was increased to 1.0 h-1. The reverse was observed for the biofilm cells. The number of biofilm cells colonising the silicone tubing increased when the dilution rate was increased. The number of biofilm cells of the mucoid strain at steady state was 2 x 10(8) cells/cm (length) when the dilution rate was fixed at 0.05 h-1. The figure increased to 8 x 10(9) cells/cm when the dilution rate was increased to 1.0 h-1. The population of biofilm cells of the nonmucoid strain was 9 x 10(7) cells/cm (length) when the dilution rate was 0.05 h-1. It increased to 2 x 10(9) cells/cm when the dilution rate was set at 1.0 h-1. The expression of IROMPs was induced in the biofilm cells of both mucoid and nonmucoid strains when the dilution rates were 0.05 and 0.2 h-1. IROMPs were reduced but still detectable at the dilution rate of 0.5 h-1. However, the expression of IROMPs was repressed when the dilution rate was increased to 1.0 h-1. The data suggest that the biofilm cells of P. aeruginosa switch on the expression of IROMPs to assist iron acquisition when the dilution rate used for the chemostat run is below 0.5 h-1. The high affinity iron uptake system is not required by the biofilm cells when the dilution rate is increased because the trace amount of iron present in the chemostat is sufficient for the growth of adherent biofilm cells.  相似文献   

20.
Exoprotease production by Pseudomonas aeruginosa ATCC 10145 was growth-associated when cultures were grown on complex substrates such as proteins but it occurred during the decelerating growth phase when the organism was grown on amino acids, mixtures of amino acids or simple carbon sources. NH4Cl and simple carbon sources caused repression. Exoprotease was produced in chemostat cultures in response to growth under any of the nutrient limitations studied (carbon, nitrogen or phosphate). Furthermore, by growing at rates less than approximately 0.1 h-1, the repression of enzyme production could be overcome to a large degree. At low growth rates there was an inverse relationship between growth rate and exoprotease production. Thus, exoprotease production was depressed by available energy sources and was increased in response to any nutrient limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号