首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A chimeric plasmid carrying the structural gene (ATP2) for the mitochondrial ATPase beta subunit of Saccharomyces cerevisiae has been used to complement a mutant of Schizosaccharomyces pombe lacking the beta subunit (Boutry, M., and Goffeau, A. (1982) Eur. J. Biochem. 125, 471-477). Transformation with ATP2 restored the growth rate of S. pombe mutant on glycerol as well as the mitochondrial ATPase and 32Pi-ATP exchange activities to approximately 20% of the parental strain. Mitochondria prepared from the transformant contained a normal amount of a hybrid F1-ATPase consisting of the S. cerevisiae beta subunit assembled with the remaining subunits of the S. pombe ATPase complex. The presence of the S. cerevisiae beta subunit in the S. pombe ATPase complex conferred a sensitivity to the energy transfer inhibitors citreoviridin and oligomycin which was like that of the intact S. cerevisiae enzyme. The S. cerevisiae beta subunit assembled into the hybrid ATPase complex was the same size as the mature subunit in S. cerevisiae. These data indicate that the mechanism of mitochondrial import and the assembly of the cytoplasmically synthesized subunits is similar or identical in these evolutionary divergent yeasts. In addition, this study provides a new approach for the construction of hybrid mitochondrial ATPase complexes which can be used to examine the function of selected subunits in energy transduction.  相似文献   

3.
In the course of our studies on the structural diversity of the isoforms of cardiac fatty acid-binding proteins (cFABPs), a cardiac-type FABP from the matrix of bovine heart mitochondria was purified to homogeneity and obtained as a single 15-kDa protein with an isoelectric point of 4.9. The primary structures of this protein and of the two isoforms isolated from the cytosol (pI4.9-cFABP and pI 5.1-cFABP) were investigated by means of plasma desorption mass spectrometry and sequencing of peptides. All three proteins are amino-terminally blocked with an acetyl group and shown to be colinear with the sequence deduced from a cDNA clone for bovine heart fatty acid-binding protein (Billich, S., Wissel, T., Kratzin, H., Hahn, U., Hagenhoff, B., Lezius, A. G., and Spener, F. (1988) Eur. J. Biochem. 175, 549-556) except for the residue at position 98. This residue is demonstrated to be the molecular origin of bovine cFABP isoforms since pI 5.1-cFABP contains Asn98 in accordance with the sequence derived from the cDNA, whereas in pI 4.9-cFABP, this position is occupied by Asp98. Moreover, mitochondrial FABP is identical to pI 4.9-cFABP. Molecular masses of pI 4.9-cFABP (14,679 +/- 10 Da) and pI 5.1-cFABP (14,678 +/- 20 Da) determined by plasma desorption mass spectrometry coincide with that calculated from the cDNA (14,673 Da). Hence, residues linked to these proteins by posttranslational modification are not present, and the Asn-Asp exchange is the sole origin of heterogeneity of mitochondrial and cytosolic fatty acid-binding proteins from bovine heart.  相似文献   

4.
Pepstatin-insensitive carboxyl proteinases from Pseudomonas sp. (PCP) and Xanthomonas sp. (XCP) have no conserved catalytic residue sequences, -Asp*-Thr-Gly- (Asp is the catalytic residue) for aspartic proteinases. To identify the catalytic residues of PCP and XCP, we selected presumed catalytic residues based on their high sequence similarity, assuming that such significant sites as catalytic residues will be generally conserved. Several Ala mutants of Asp or Glu residues were constructed and analyzed. The D170A, E222A, and D328A mutants for PCP and XD79A, XD169A, and XD348A mutants for XCP were not converted to mature protein after activation, and no catalytic activity could be detected in these mutants. The specificity constants toward chromogenic substrate of the other PCP and XCP mutants, except for the D84A mutant of PCP, were similar to that of wild-type PCP or XCP. Coupled with the result of chemical modification (Ito, M., Narutaki, S., Uchida, K., and Oda, K. (1999) J. Biochem. (Tokyo) 125, 210-216), a pair of Asp residues (170 and 328) for PCP and a pair of Asp residues (169 and 348) for XCP were elucidated to be their catalytic residues, respectively. The Glu(222) residue in PCP or Asp(79) residue in XCP was excluded from the candidates as catalytic residues, since the corresponding mutant retained its original activity.  相似文献   

5.
6.
7.
A 2.4 kilobase cDNA for rat mitochondrial aspartate aminotransferase (E.C. 2.6.1.1.) was isolated and sequenced. The predicted presequence is 93% homologous to the presequences of the enzyme from pig and mouse. The predicted amino acid sequence of the mature enzyme differs from that determined directly by amino acid sequencing (Huynh, Q.K., Sakakibara, R., Watanabe, T., and Wada, H. (1981) J. Biochem. (Tokyo) 90, 863-875) at 13 amino acids residues. The most important difference is at position 140 where the cDNA encodes a tryptophanyl residue rather than the previously reported glycine. This critical residue is now seen to be conserved in all aspartate aminotransferases. The coding region of this cDNA was inserted into the plasmid cloning vector pKK233-2 and used to stably express an unfused precursor in Escherichia coli JM105.  相似文献   

8.
Peptic and chymotryptic peptides were isolated form the NADP-specific glutamate dehydrogenase of Neurospora crassa and substantially sequenced. Out of 452 residues in the polypeptide chain, 265 were recovered in the peptic and 427 in the chymotryptic peptides. Together with the tryptic peptides [Wootton, J. C., Taylor, J. G., Jackson, A. A., Chambers, G. K. & Fincham, J. R. S. (1975) Biochem. J. 149, 749-755], these establish the complete sequence of the chain, including the acid and amide assignments, except for seven places where overlaps are inadequate. These remaining alignments are deduced from information on the CNBr fragments obtained in another laboratory [Blumenthal, K. M., Moon, K. & Smith, E. L. (1975), J. Biol. Chem. 250, 3644-3654]. Further information has been deposited as Supplementary Publication SUP 50054 (17 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem. J. (1975) 145, 5.  相似文献   

9.
Twenty-five spontaneous temperature-stable revertants of four different temperature-sensitive (ts) M protein mutants (complementation group III: tsG31, tsG33, tsO23, and tsO89) were sequenced and tested for their ability to inhibit vesicular stomatitis virus RNA polymerase activity in vitro. Consensus sequences of the coding region of each M protein gene were determined, using total viral RNA as template. Fifteen different sequences were found among the 25 revertants; 14 differed from their ts parent by a single amino acid (one nucleotide), and 1 differed by two amino acids (two nucleotides). Amino acids were altered in various positions between residues 64 and 215, representing over 60% of the polypeptide chain. Resequencing of the Glasgow and Orsay wild types and the four ts mutants confirmed previously published differences (Y. Gopalakrishana and J. Lenard, J. Virol., 56:655-659, 1985), and one or two additional differences were found in each. The relative charges of the revertant M proteins, as determined by nonequilibrium pH gradient electrophoresis, were consistent with the deduced sequences in every case. The ability of each revertant M protein to inhibit the RNA polymerase activity of nucleocapsids prepared from its parent ts mutant was also tested. Only 13 of the 25 revertants had M protein with high (wild type-like) polymerase-inhibiting activity, while 5 had low (ts-like) activity, and 7 had intermediate activity, demonstrating that this property is not an essential concomitant of the temperature-stable phenotype. It is concluded that the high reversion frequency observed for these mutants arises from a very high incidence of pseudoreversion, i.e., many different molecular changes can repair the ts phenotype.  相似文献   

10.
The nucleotide sequence coding for the beta chain of murine C3 was determined from cloned cDNA and genomic DNA fragments. Sonicated subfragments were randomly inserted into the bacteriophage M13 and sequenced using the dideoxynucleotide technique. Each nucleotide was sequenced on average six times in these studies. The derived amino acid sequence includes a signal peptide and a tetra-arginine sequence between the beta and alpha subunits in the precursor polypeptide prepro-C3. Together with the accompanying report (Wetsel, R.A., Lundwall, A., Davidson, F., Gibson, T., Tack, B.F., and Fey, G.H. (1984) J. Biol. Chem. 259, 13857-13862), this paper completes the analysis of the coding sequences for the prepro-C3 polypeptide. The derived molecular weight of the unglycosylated beta chain (642 amino acids) is 70,641. The sequences of the first two introns in the murine C3 gene and of the 5'-flanking 106 nucleotides are also reported. The 5'-flanking region contains a TATA consensus sequence in agreement with an earlier report (Wiebauer, K., Domdey, H., Diggelmann, H., and Fey, G.H. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 7077-7081), presumed to be involving in regulating the expression of the C3 gene. A striking feature of the derived sequence was that only 3 cysteine residues were found, all located in the C-terminal part of the polypeptide chain. No carbohydrate attachment sites were predicted in the beta chain.  相似文献   

11.
All microsomal P450s have a proline-rich sequence (PR) in the amino-terminal region that is needed for proper folding [Kusano, K., Sakaguchi, M., Kagawa, N., Waterman, M.R. and Omura, T. (2001) J. Biochem., 129, 259-269]. There are also multiple proline residues near the amino-termini of the mature forms of all mitochondrial P450s and the amino-termini of soluble microbial P450s. To examine the functional significance of the PR in mitochondrial P450s, we expressed human P450c27 (CYP27) and bovine P450scc (CYP11A1) in an Escherichia coli heterologous expression system, and found that in each one specific proline residue is important for correct folding. Deletions from the amino-terminus further indicated the importance of the PR for the expression of a spectrally normal P450c27. Essentially the same results were obtained with two soluble microbial P450s, P450cam (CYP101) and P450nor, in each of which a PR is important for proper folding. We conclude that in all P450s (mitochondrial, microbial and microsomal P450s), a proline-rich sequence located in the amino-terminal region is important for proper folding. Furthermore, we predict that the importance of the PR in P450 folding is to reduce the tendency of the polypeptide to misfold prior to heme binding.  相似文献   

12.
The nucleotide sequence of the mRNA coding for the precursor of mitochondrial serine:pyruvate aminotransferase of rat liver was determined from those of cDNA clones. The mRNA comprises at least 1533 nucleotides, except the poly(A) tail, and encodes a polypeptide consisting of 414 amino acid residues with a molecular mass of 45,834 Da. Comparison of the N-terminal amino acid sequence of mitochondrial serine:pyruvate aminotransferase with the nucleotide sequence of the mRNA showed that the mature form of the mitochondrial enzyme consisted of 390 amino acid residues of 43,210 Da. The amino acid composition of mitochondrial serine:pyruvate aminotransferase deduced from the nucleotide sequence of the cDNA showed good agreement with the composition determined on acid hydrolysis of the purified protein. The extra 24 amino acid residues correspond to the N-terminal extension peptide (pre-sequence) that is indispensable for the specific import of the precursor protein into mitochondria. In the extension peptide there are four basic amino acids distributed among hydrophobic amino acids and, as revealed on helical wheel analysis, the putative alpha-helical structure of the peptide was amphiphilic in nature. The secondary structures of the mature serine:pyruvate aminotransferase and three other aminotransferases of rat liver were predicted from their amino acid sequences. Their secondary structures exhibited a common feature and so we propose the specific lysine residue which binds pyridoxal phosphate as the active site of serine:pyruvate aminotransferase.  相似文献   

13.
The nucleotide sequences of mRNAs for the mouse mitochondrial and cytosolic aspartate aminotransferase isoenzymes (mAspAT and cAspAT) (EC 2.6.1.1) were determined from complementary DNAs. The mAspAT mRNA comprises minimally 2460 nucleotides and codes for a polypeptide of 430 amino acid residues corresponding to the precursor form of the mAspAT (pre-mAspAT). The cAspAT mRNA comprises minimally 2086 nucleotides and codes for a polypeptide of 413 amino acid residues. The region coding for the mature mAspAT and that for the cAspAT show about 53% overall homology. The former shares 49% and the latter 48% of homology, respectively, with that of the Escherichia coli aspC gene, which has been shown to code for the E. coli AspAT (Kuramitsu, S., Okuno, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 1259-1262). When the deduced amino acid sequence of the mouse pre-mAspAT was compared with that of the pig pre-mAspAT polypeptide, we found that they share a 94% homology and that the mouse pre-mAspAT yields a presequence consisting of 29 amino acid residues and a mature mAspAT, consisting of 401 amino acid residues. These numbers and the amino acid residues present at the putative cleavage site are all in complete agreement in these two species. The deduced amino acid sequence of the mouse cAspAT shares 91% homology with that of the pig cAspAT. Comparisons of the nucleotide and deduced amino acid sequences between the mouse and E. coli AspATs suggest that the mammalian mAspAT gene is more closely related to the E. coli aspC gene than is the mammalian cAspAT gene.  相似文献   

14.
The xyl1 gene encoding the Xyl1 xylanase of Streptomyces sp. strain S38 was cloned by screening an enriched DNA library with a specific DNA probe and sequenced. Three short 5 bp -CGAAA- sequences are located upstream of the Streptomyces sp. S38 xyl1 gene 105, 115 and 250 bp before the start codon. These sequences, named boxes 1, 2 and 3, are conserved upstream of the Actinomycetales xylanase genes and are specifically recognized by a DNA-binding protein (Giannotta et al., 1994. FEMS Microbiol. Lett. 142, 91-97) and could be probably involved in the regulation of xylanase production. The Xyl1 ORF encodes a 228 residue polypeptide and the Xyl1 preprotein contains a 38 residue signal peptide whose cleavage yields a 190 residue mature protein of calculated M(r) = 20,585 and basic pI value of 9.12. The molecular mass of the produced and purified mature protein determined by mass spectrometry (20,586 +/- 1 Da) and its pI (9.8) agree with these calculated values. Its N-terminal amino-acid sequence confirmed the proposed cleavage site between the signal peptide and the mature protein. Comparisons between Xyl1 and the 62 other xylanases belonging to family 11 allowed the construction of a phylogenetic tree and revealed its close relationship with Actinomycetales enzymes. Moreover, nine residues were found to be strictly conserved among the 63 xylanases.  相似文献   

15.
The molecular mass of proteinase K was determined by gel electrophoresis in the presence of sodium dodecyl sulfate and by active site labelling with diisopropyl fluorophosphate. Both methods indicate molecular masses in the range of 27 000-29 000 Da. These values differ significantly from that of 18 500 formerly determined by gel filtration (Ebeling et al. (1974) Eur. J. Biochem. 47, 91-97). Proteinase K was inactivated with [3H]diisopropyl fluorophosphate. Afterwards the labelled protein was reduced, S-carboxymethylated and digested with cyanogen bromide. The chain lengths of the isolated CNBr-fragments are indicative of a molecular mass of proteinase K of at least 28 000 Da. Two CNBr-fragments were sequenced. The radioactively labelled fragment contains 69 residues and the sequence around the labelled residues was found to be -Ile-Ser-Gly-Thr-SER-Met-Ala-Thr-Pro-. This sequence is typical for that around the active site residue of the subtilisins. From the determined sequences it is concluded that the fungal proteinase K is phylogenetically related to the bacterial subtilisins.  相似文献   

16.
Bivalve species are characterized by extraordinary variability in terms of mitochondrial (mt) genome size, gene arrangement and tRNA gene number. Many species are thought to lack the mitochondrial protein-coding gene atp8. Of these species, the Mytilidae appears to be the only known taxon with doubly uniparental inheritance of mtDNA that does not possess the atp8 gene. This raises the question as to whether mytilids have completely lost the ATP8 protein, whether the gene has been transferred to the nucleus or whether they possess a highly modified version of the gene/protein that has led to its lack of annotation. In the present study, we re-investigated all complete (or nearly complete) F and M mytilid mt genomes previously sequenced for the presence of conserved open reading frames (ORFs) that might code for ATP8 and/or have other functional importance in these bivalves. We also revised the annotations of all available complete mitochondrial genomes of bivalves and nematodes that are thought to lack atp8 in an attempt to detect it. Our results indicate that a novel mytilid ORF of significant length (i.e., the ORF is >85 amino acids in length), with complete start and stop codons, is a candidate for the atp8 gene: (1) it possesses a pattern of evolution expected for a protein-coding gene evolving under purifying selection (i.e., the 3rd>1st>2nd codon pattern of evolution), (2) it is actively transcribed in Mytilus species, (3) it has one predicted transmembrane helix (as do other metazoan ATP8 proteins), (4) it has conserved functional motifs and (5), comparisons of its amino acid sequence with ATP8 sequences of other molluscan or bivalve species reveal similar hydropathy profiles. Furthermore, our revised annotations also confirmed the mt presence of atp8 in almost all bivalve species and in one nematode species. Our results thus support recognizing the presence of ATPase 8 in most bivalves mt genomes (if not all) rather than the continued characterization of these genomes as lacking this gene.  相似文献   

17.
Pig gastric (H+ + K+)-ATPase can be covalently modified with pyridoxal 5'-phosphate (PLP) (about 1 mol/mol enzyme), and this modification is not observed in the presence of ATP, suggesting that PLP binds to a specific Lys residue in the ATP binding site or the region in its vicinity (Maeda, M., Tagaya, M., and Futai, M. (1988) J. Biol. Chem. 263, 3652-3656). The peptides labeled with radioactive PLP could be released from the gastric membrane vesicles quantitatively by chymotrypsin treatment, and two peptides were purified by high performance liquid chromatographies. These peptides were not obtained from vesicles incubated with PLP in the presence of ATP. The sequences of the two peptides were NH2-Asn-Ser-Thr-Asn-Lys-Phe-COOH and NH2-Ser-Thr-Asn-Lys-Phe-COOH, exactly corresponding to residues 493-498 and 494-498, respectively, of pig gastric (H+ + K+)-ATPase sequenced recently (Maeda, M., Ishizaki, J., and Futai, M. (1988) Biochem. Biophys. Res. Commun. 157, 203-209). Lys-497 was concluded to be the binding site of PLP, as pyridoxyl-Lys was identified at the corresponding position. This Lys residue is conserved in (Na+ + K+)- and Ca2+-ATPases. The possible amino acid residues in the catalytic site of gastric (H+ + K+)-ATPase are discussed.  相似文献   

18.
The nucleotide sequence of the oli1 gene encoding mitochondrial ATPase subunit 9 (76 amino acids) has been determined for five oligomycin-resistant mutants of Saccharomyces cerevisiae. Three of the mutations affect amino acids in the vicinity of the glutamic acid residue 59 at which dicylohexyl carbodiimide binds. Two other mutations lead to substitution of amino acid 23, which would lie very close to residue 59 in the folded hairpin conformation that this protein is thought to adopt in the inner mitochondrial membrane. The apposition of residues 23 and those adjacent to residue 59, lying respectively in the two hydrophobic membrane-spanning arms of subunit 9, is considered to constitute an oligomycin-binding domain. By consideration of the amino acid substitutions in those mutants cross-resistant to venturicidin, a domain of resistance for venturicidin is defined to lie within the oligomycin-binding domain, also centered on residues 23 and 59. These data also clarify the genetic recombination behaviour of alleles previously defined to form part of the oli3 locus (mutants characterized by resistance to both oligomycin and venturicidin) together with alleles defined to form part of the oli1 locus (mutants not cross-resistant to venturicidin). The oli1 and oli3 loci can now be seen to form two overlapping extended groups within the oli1 gene, with sequenced oli3 mutations being as far apart as 125 nucleotides within the subunit 9 coding region of 231 nucleotides.  相似文献   

19.
We reported earlier (Schloss, J. V., and Hartman, F. C. (1977) Biochem. Biophys. Res. Commun. 77, 230-236) that N-bromoacetylethanolamine phosphate is an affinity label for spinach ribulosebisphosphate carboxylase/oxygenase. We now show inactivation to be correlated directly with the alkylation either of a single lysyl residue (in the presence of Mg2+) or of 2 different cysteinyl residues (in the absence of Mg2+), consistent with the likelihood that these residues are located in the active site region. This proposition is further supported by the demonstration that the residues are protected from alkylation by substrate, a competitive inhibitor, or the transition state analog 2-carboxyribitol bisphosphate. Tryptic peptides that contain the modified residues have been isolated and sequenced. One of the 2 cysteinyl residues that are subject to alkylation is only 3 residues distant in sequence from the lysyl residue modified by bromoacetylethanolamine phosphate. This lysyl residue is identical with 1 of the 2 lysyl residues alkylated by the previously described affinity label, 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate (Stringer, C. D., and Hartman, F. C. (1978) Biochem. Biophys, Res. Commun. 80, 1043-1048).  相似文献   

20.
Mavicyanin, a glycosylated protein isolated from Cucurbita pepo medullosa (zucchini), is a member of the phytocyanin subfamily containing one polypeptide chain of 109 amino residues and an unusual type-I Cu site in which the copper ligands are His45, Cys86, His91, and Gln96. The crystal structures of oxidized and reduced mavicyanin were determined at 1.6 and 1.9 A resolution, respectively. Mavicyanin has a core structure of seven polypeptide beta-strands arranged as a beta-sandwich organized into two beta-sheets, and the structure considerably resembles that of stellacyanin from cucumber (CST) or cucumber basic protein (CBP). A flexible region was not observed on superimpositioning of the oxidized and reduced mavicyanin structures. However, the Cu(II)-epsilon-O-Gln96 bond length was extended by 0.47 A, and the Thr15 residue was rotated by 60.0 degrees and O-gamma1-Thr15 moved from a distance of 4.78 to 2.58 A from the ligand Gln96 forming a new hydrogen bond between O-gamma1-Thr15 and epsilon-O-Gln96 upon reduction. The reorganization of copper coordination geometry of mavicyanin upon reduction arouses reduction potential decreased above pH 8 [Battistuzzi et al. (2001) J. Inorg. Biochem. 83, 223-227]. The rotation of Thr15 and the hydrogen bonding with the ligand Gln96 may constitute structural evidence of the decrease in the reduction potential at high pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号