首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of class A beta-lactamases is a major cause of clinical resistance to beta-lactam antibiotics. Some of class A beta-lactamases are known to have a disulfide bridge. Both narrow spectrum and extended spectrum beta-lactamases of TEM and the SHV enzymes possess a disulfide bond between Cys77 and Cys123, and the enzymes with carbapenem-hydrolyzing activity have a well-conserved disulfide bridge between Cys69 and Cys238. We produced A77C/G123C mutant of the extended-spectrum beta-lactamase Toho-1 in order to introduce a disulfide bond between the cysteine residues at positions 77 and 123. The result of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) titrations confirmed formation of a new disulfide bridge in the mutant. The results of irreversible heat inactivation and circular dichroism (CD) melting experiments indicated that the disulfide bridge stabilized the enzyme significantly. Though kinetic analysis indicated that the catalytic properties of the mutant were quite similar to those of the wild-type enzyme, E. coli producing this mutant showed drug resistance significantly higher than E. coli producing the wild-type enzyme. We speculate that the stability of the enzymes provided by the disulfide bond may explain the wide distribution of TEM and SHV derivatives and explain how various mutations can cause broadened substrate specificity without loss of stability.  相似文献   

2.
A combinatorial library of mutants of the phage displayed TEM-1 lactamase was generated in the region encompassing residues 163 to 171 of the active site Omega-loop. Two in vitro selection protocols were designed to extract from the library phage-enzymes characterised by a fast acylation by benzyl-penicillin (PenG) to yield either stable or very unstable acyl-enzymes. The critical step of the selections was the kinetically controlled labelling of the phages by reaction with either a biotinylated penicillin derivative or a biotinylated penicillin sulfone, i.e. a beta-lactamase suicide substrate; the biotinylated phages were recovered by panning on immobilised streptavidin. As labelling with biotinylated suicide substrates tends to select enzymes that do not turnover, a counter-selection against penicillin binding mutants was introduced to extract the beta-lactamases. The selected phage-enzymes were characterised by sequencing to identify conserved residues and by kinetic analysis of the reaction with benzyl-penicillin. Several penicillin binding mutants, in which the essential Glu166 is replaced by Asn, were shown to be acylated very fast by PenG, the acylation being characterised by biphasic kinetics. These data are interpreted by a kinetic scheme in which the enzymes exist in two interconvertible conformations. The rate constant of the conformational change suggests that it involves an isomerisation of the peptide bond between residues 166 and 167 and controls a conformation of the Omega-loop compatible with fast acylation of the active site serine residue.  相似文献   

3.
The serine DD-transpeptidase/penicillin-binding protein of Streptomyces K15 catalyzes peptide bond formation in a way that mimics the penicillin-sensitive peptide cross-linking reaction involved in bacterial cell wall peptidoglycan assembly. The Streptomyces K15 enzyme is peculiar in that it can be considered as an intermediate between classical penicillin-binding proteins, for which benzylpenicillin is a very efficient inactivator, and the resistant penicillin-binding proteins that have a low penicillin affinity. With its moderate penicillin sensitivity, the Streptomyces K15 DD-transpeptidase would be helpful in the understanding of the structure-activity relationship of this penicillin-recognizing protein superfamily. The structure of the Streptomyces K15 enzyme has been determined by x-ray crystallography at 2.0-A resolution and refined to an R-factor of 18.6%. The fold adopted by this 262-amino acid polypeptide generates a two-domain structure that is close to those of class A beta-lactamases. However, the Streptomyces K15 enzyme has two particular structural features. It lacks the amino-terminal alpha-helix found in the other penicilloyl-serine transferases, and it exhibits, at its surface, an additional four-stranded beta-sheet. These two characteristics might serve to anchor the enzyme in the plasma membrane. The overall topology of the catalytic pocket of the Streptomyces K15 enzyme is also comparable to that of the class A beta-lactamases, except that the Omega-loop, which bears the essential catalytic Glu(166) residue in the class A beta-lactamases, is entirely modified. This loop adopts a conformation similar to those found in the Streptomyces R61 DD-carboxypeptidase and class C beta-lactamases, with no equivalent acidic residue.  相似文献   

4.
The emergence and dissemination of extended-spectrum (ES) beta-lactamases induce therapeutic failure and a lack of eradication of clinical isolates even by third-generation beta-lactam antibiotics like ceftazidime. CMY-10 is a plasmid-encoded class C beta-lactamase with a wide spectrum of substrates. Unlike the well-studied class C ES beta-lactamase from Enterobacter cloacae GC1, the Omega-loop does not affect the active site conformation and the catalytic activity of CMY-10. Instead, a three-amino-acid deletion in the R2-loop appears to be responsible for the ES activity of CMY-10. According to the crystal structure solved at 1.55 A resolution, the deletion significantly widens the R2 active site, which accommodates the R2 side-chains of beta-lactam antibiotics. This observation led us to demonstrate the hydrolysing activity of CMY-10 towards imipenem with a long R2 substituent. The forced mutational analyses of P99 beta-lactamase reveal that the introduction of deletion mutations into the R2-loop is able to extend the substrate spectrum of class C non-ES beta-lactamases, which is compatible with the isolation of natural class C ES enzymes harbouring deletion mutations in the R2-loop. Consequently, the opening of the R2 active site by the deletion of some residues in the R2-loop can be considered as an operative molecular strategy of class C beta-lactamases to extend their substrate spectrum.  相似文献   

5.
More than half of all currently used antibiotics belong to the beta-lactam group, but their clinical effectiveness is severely limited by antibiotic resistance of microorganisms that are the causative agents of infectious diseases. Several mechanisms for the resistance of Enterobacteriaceae have been established, but the main one is the enzymatic hydrolysis of the antibiotic by specific enzymes called beta-lactamases. Beta-lactamases represent a large group of genetically and function-ally different enzymes of which extended-spectrum beta-lactamases (ESBLs) pose the greatest threat. Due to the plasmid localization of the encoded genes, the distribution of these enzymes among the pathogens increases every year. Among ESBLs the most widespread and clinically relevant are class A ESBLs of TEM, SHV, and CTX-M types. TEM and SHV type ESBLs are derived from penicillinases TEM-1, TEM-2, and SHV-1 and are characterized by several single amino acid substitutions. The extended spectrum of substrate specificity for CTX-M beta-lactamases is also associated with the emergence of single mutations in the coding genes. The present review describes various molecular-biological methods used to identify determinants of antibiotic resistance. Particular attention is given to the method of hybridization analysis on microarrays, which allows simultaneous multiparametric determination of many genes and point mutations in them. A separate chapter deals with the use of hybridization analysis on microarrays for genotyping of the major clinically significant ESBLs. Specificity of mutation detection by means of hybridization analysis with different detection techniques is compared.  相似文献   

6.
Majiduddin FK  Palzkill T 《Genetics》2003,163(2):457-466
The TEM-1 and SHV-1 beta-lactamases are important contributors to resistance to beta-lactam antibiotics in gram-negative bacteria. These enzymes share 68% amino acid sequence identity and their atomic structures are nearly superimposable. Extended-spectrum cephalosporins were introduced to avoid the action of these beta-lactamases. The widespread use of antibiotics has led to the evolution of variant TEM and SHV enzymes that can hydrolyze extended-spectrum antibiotics. Despite being highly similar in structure, the TEM and SHV enzymes have evolved differently in response to the selective pressure of antibiotic therapy. Examples of this are at residues Arg164 and Asp179. Among TEM variants, substitutions are found only at position 164, while among SHV variants, substitutions are found only at position 179. To explain this observation, the effects of substitutions at position 164 in both TEM-1 and SHV-1 on antibiotic resistance and on enzyme catalytic efficiency were examined. Competition experiments were performed between mutants to understand why certain substitutions preferentially evolve in response to the selective pressure of antibiotic therapy. The data presented here indicate that substitutions at position Asp179 in SHV-1 and Arg164 in TEM-1 are more beneficial to bacteria because they provide increased fitness relative to either wild type or other mutants.  相似文献   

7.
Citrobacter freundii GN346 produces a class C beta-lactamase exhibiting the substrate profile of a typical cephalosporinase. The structural and promoter regions of the cephalosporinase gene, comprising 1408 nucleotides, were completely sequenced. The amino acid sequence of the mature enzyme, comprising 361 amino acids, and its molecular mass, 39,878 Da, were determined. The active site was confirmed to be Ser-64. The amino acid sequence of the enzyme differs from that of the cephalosporinase of C. freundii OS60 by nine residues. The nucleotide sequence of the promoter region suggests a possible attenuator structure. Lys-67, one of the most conserved residues found in class A and C beta-lactamases and penicillin-binding proteins, was converted into arginine, threonine or glutamic acid through site-directed mutagenesis. The Glu-67 enzyme had lost the catalytic activity and the Thr-67 enzyme only showed a trace of activity. The Arg-67 enzyme, which retained a significant amount of the activity, was purified. The Km values of the Arg-67 enzyme for cephalothin, cephaloridine and benzylpenicillin are 13-19 times those of the wild-type enzyme; the kcat values for the three substrates are 37%, 3%, and 36% those of the wild-type enzyme, respectively.  相似文献   

8.
The hydrolysis of beta-lactam antibiotics by class A beta-lactamases is a common cause of bacterial resistance to these agents. The beta-lactamase inhibitory protein (BLIP) is able to bind and inhibit several class A beta-lactamases, including TEM-1 beta-lactamase and SME-1 beta-lactamase. Although the TEM-1 and SME-1 enzymes share 33% amino acid sequence identity and a similar fold, they differ substantially in surface electrostatic properties and the conformation of a loop-helix region that BLIP binds. Alanine-scanning mutagenesis was performed to identify the residues on BLIP that contribute to its binding affinity for each of these enzymes. The results indicate that the sequence requirements for binding are similar for both enzymes with most of the binding free energy provided by two patches of aromatic residues on the surface of BLIP. Polar residues such as several serines in the interface do not make significant contributions to affinity for either enzyme. In addition, the specificity of binding is significantly altered by mutation of two charged residues, Glu73 and Lys74, that are buried in the structure of the TEM-1.BLIP complex as well as by residues located on two loops that insert into the active site pocket. Based on the results, a E73A/Y50A double mutant was constructed that exhibited a 220,000-fold change in binding specificity for the TEM-1 versus SME-1 enzymes.  相似文献   

9.
Crystal structure of the class D beta-lactamase OXA-10   总被引:2,自引:0,他引:2  
We report the crystal structure of a class D beta-lactamase, the broad spectrum enzyme OXA-10 from Pseudomonas aeruginosa at 2.0 A resolution. There are significant differences between the overall fold observed in this structure and those of the evolutionarily related class A and class C beta-lactamases. Furthermore, the structure suggests the unique, cation mediated formation of a homodimer. Kinetic and hydrodynamic data shows that the dimer is a relevant species in solution and is the more active form of the enzyme. Comparison of the molecular details of the active sites of the class A and class C enzymes with the OXA-10 structure reveals that there is no counterpart in OXA-10 to the residues proposed to act as general bases in either of these enzymes (Glu 166 and Tyr 150, respectively). Our structures of the native and chloride inhibited forms of OXA-10 suggest that the class D enzymes have evolved a distinct catalytic mechanism for beta-lactam hydrolysis. Clinical variants of OXA-10 are also discussed in light of the structure.  相似文献   

10.
Inhibitor-resistant class A beta-lactamases are an emerging threat to the use of beta-lactam/beta-lactamase inhibitor combinations (e.g. amoxicillin/clavulanate) in the treatment of serious bacterial infections. In the TEM family of Class A beta-lactamases, single amino acid substitutions at Arg-244 confer resistance to clavulanate inactivation. To understand the amino acid sequence requirements in class A beta-lactamases that confer resistance to clavulanate, we performed site-saturation mutagenesis of Arg-244 in SHV-1, a related class A beta-lactamase found in Klebsiella pneumoniae. Twelve SHV enzymes with amino acid substitutions at Arg-244 resulted in significant increases in minimal inhibitory concentrations to ampicillin/clavulanate when expressed in Escherichia coli. Kinetic analyses of SHV-1, R244S, R244Q, R244L, and R244E beta-lactamases revealed that the main determinant of clavulanate resistance was reduced inhibitor affinity. In contrast to studies in the highly similar TEM enzyme, we observed increases in clavulanate k(inact) for all mutants. Electrospray ionization mass spectrometry of clavulanate inhibited SHV-1 and R244S showed nearly identical mass adducts, arguing against a difference in the inactivation mechanism. Testing a wide range of substrates with C3-4 carboxylates in different stereochemical orientations, we observed impaired affinity for all substrates among inhibitor resistant variants. Lastly, we synthesized two boronic acid transition state analogs that mimic cephalothin and found substitutions at Arg-244 markedly affect both the affinity and kinetics of binding to the chiral, deacylation transition state inhibitor. These data define a role for Arg-244 in substrate and inhibitor binding in the SHV beta-lactamase.  相似文献   

11.
Infections with bacteria that contain hydrolytic beta-lactamase enzymes are becoming a serious problem in the United States. Mutations at Met-69, an amino acid proximal to the active site Ser-70 in the TEM-1 and SHV-1 beta-lactamases, have emerged as a puzzling cause of bacterial resistance to inhibitors of beta-lactamases. Site-saturation mutagenesis of the 69 position in SHV beta-lactamase was performed to determine how mutations of this non-catalytic residue play a role in increasing 50% inhibitory concentrations (IC(50) concentrations) for clinically important beta-lactamase enzyme inhibitors. Two distinct phenotypes are evident in the variant beta-lactamases studied: significantly increased minimum inhibitory concentrations (microg/ml) and IC(50) concentrations to clavulanic acid for the Met69Ile, Leu, and Val substitutions, and unanticipated increased minimum inhibitory concentrations and hydrolytic activity toward ceftazidime, an advanced generation cephalosporin antibiotic, for the Met69Lys, Tyr- and Phe-substituted enzymes. Molecular modeling studies emphasize the conserved structure of these substitutions despite great variation in substrate specificity. This study demonstrates the key role of Met-69 in defining substrate specificity of SHV beta-lactamases and alerts us to new phenotypes that may emerge clinically.  相似文献   

12.
Two beta-lactamases were isolated from strains of Proteus species and purified, one from a strain of P. rettgeri and the other from a strain of P. inconstans. Each enzyme preparation gave a single protein band on polyacrylamide gel electrophoresis. Molecular weights of P. rettgeri and P. inconstans enzymes were found to be 42,000 and 43,000, and their isoelectric points pH 8.7 and 8.6, respectively. The two enzymes presented typical cephalosporinase profiles. Cefmetazole (CS-1170) and cefoxitin, both cephamycin antibiotics, not only resisted hydrolysis by both of the enzymes, but also inhibited their activities competitively. Rabbit antiserum against purified P. rettgeri enzyme inhibited the activity of both purified and crude enzyme preparations from other strains of P. rettgeri so far tested. None of the beta-lactamases produced by other species of Proteus including P. inconstans was inhibited by the antiserum, thus showing that the purified cephalosporinase was of the species-specific types. The enzymological properties of the preparations were compared with those of beta-lactamases derived from other gram-negative enteric bacteria.  相似文献   

13.
BACKGROUND: beta-lactam antibiotic therapies are commonly challenged by the hydrolytic activities of beta-lactamases in bacteria. These enzymes have been grouped into four classes: A, B, C, and D. Class B beta-lactamases are zinc dependent, and enzymes of classes A, C, and D are transiently acylated on a serine residue in the course of the turnover chemistry. While class A and C beta-lactamases have been extensively characterized by biochemical and structural methods, class D enzymes remain the least studied despite their increasing importance in the clinic. RESULTS: The crystal structure of the OXA10 class D beta-lactamase has been solved to 1.66 A resolution from a gold derivative and MAD phasing. This structure reveals that beta-lactamases from classes D and A, despite very poor sequence similarity, share a similar overall fold. An additional beta strand in OXA10 mediates the association into dimers characterized by analytical ultracentrifugation. Major differences are found when comparing the molecular details of the active site of this class D enzyme to the corresponding regions in class A and C beta-lactamases. In the native structure of the OXA10 enzyme solved to 1.8 A, Lys-70 is carbamylated. CONCLUSIONS: Several features were revealed by this study: the dimeric structure of the OXA10 beta-lactamase, an extension of the substrate binding site which suggests that class D enzymes may bind other substrates beside beta-lactams, and carbamylation of the active site Lys-70 residue. The CO2-dependent activity of the OXA10 enzyme and the kinetic properties of the natural OXA17 mutant protein suggest possible relationships between carbamylation, inhibition of the enzyme by anions, and biphasic behavior of the enzyme.  相似文献   

14.
Bacterial resistance to beta-lactam antibiotics is a serious problem limiting current clinical therapy. The most common form of resistance is the production of beta-lactamases that inactivate beta-lactam antibiotics. Toho-1 is an extended-spectrum beta-lactamase that has acquired efficient activity not only to penicillins but also to cephalosporins including the expanded-spectrum cephalosporins that were developed to be stable in former beta-lactamases. We present the acyl-intermediate structures of Toho-1 in complex with cefotaxime (expanded-spectrum cephalosporin), cephalothin (non-expanded-spectrum cephalosporin), and benzylpenicillin at 1.8-, 2.0-, and 2.1-A resolutions, respectively. These structures reveal distinct features that can explain the ability of Toho-1 to hydrolyze expanded-spectrum cephalosporins. First, the Omega-loop of Toho-1 is displaced to avoid the steric contacts with the bulky side chain of cefotaxime. Second, the conserved residues Asn(104) and Asp(240) form unique interactions with the bulky side chain of cefotaxime to fix it tightly. Finally, the unique interaction between the conserved Ser(237) and cephalosporins probably helps to bring the beta-lactam carbonyl group to the suitable position in the oxyanion hole, thus increasing the cephalosporinase activity.  相似文献   

15.
Intragenic DNA probes were synthesized by polymerase chain reaction using fragments of the genes of three major types of beta-lactamases (TEM, SHV, CARB) as templates. The TEM probe hybridized with the genes encoding TEM-1, TEM-2 and six extended-spectrum related enzymes (TEM-3 to TEM-7, TEM-2O) in colony hybridizations and Southern-blot analysis. The SHV probe hybridized with the genes for SHV-1, OHIO-1 and four derived extended-spectrum beta-lactamases (SHV-2, SHV-3, SHV-4 and SHV-5). The CARB probe hybridized with the genes for PSE-1 (CARB-2), PSE-4 (CARB-1), CARB-3 and CARB-4. None of the probes hybridized with genes for any of eight oxacillin-hydrolysing enzymes, PSE-2, OXA-1 to OXA-7, ROB-1 and chromosomal beta-lactamases of various Enterobacteriaceae (except Klebsiella pneumoniae) and Pseudomonas aeruginosa. Investigations of Escherichia coli clinical isolates using these probes indicate the presence of a novel type of extended-spectrum, transferable beta-lactamase.  相似文献   

16.
Third-generation cephalosporin resistance is often mediated by TEM- and SHV-type beta-lactamases in Enterobacteriaceae. TEM-type and OXA-1 enzymes are the major plasmid-borne beta-lactamases implicated in amoxicillin-clavulanic acid resistance in Escherichia coli isolates. We have developed a rapid and simple multiplex polymerase chain reaction (PCR) which discriminates bla(TEM), bla(SHV) and bla(OXA-1) genes by generating fragments of 516, 392 and 619 bp respectively. Multiplex PCR analysis of 51 amoxicillin-clavulanate resistant E. coli isolates detected bla(TEM) and bla(SHV) genes in 45 and two strains, respectively, and only one strain harboured a bla(OXA-1) gene. Twenty-three of the 40 cefotaxime-resistant Enterobacteriaceae isolates produced amplicons with a size compatible with the presence of bla(TEM) (13 strains), bla(SHV) (six strains) genes or the association of both genes (four strains). These results were verified by colony hybridisation. Therefore, multiplex PCR is a suitable tool for initial rapid screening of bla genes in Enterobacteriaceae.  相似文献   

17.
We investigated the effects of mutations at positions 164 and 179 of the TEM(pUC19) beta-lactamase on turnover of substrates. The direct consequence of some mutations at these sites is that clinically important expanded-spectrum beta-lactams, such as third-generation cephalosporins, which are normally exceedingly poor substrates for class A beta-lactamases, bind the active site of these mutant enzymes more favorably. We employed site-saturation mutagenesis at both positions 164 and 179 to identify mutant variants of the parental enzyme that conferred resistance to expanded-spectrum beta-lactams by their enhanced ability to turn over these antibiotic substrates. Four of these mutant variants, Arg(164) --> Asn, Arg(164) --> Ser, Asp(179) --> Asn, and Asp(179) --> Gly, were purified and the details of their catalytic properties were examined in a series of biochemical and kinetic experiments. The effects on the kinetic parameters were such that either activity with the expanded-spectrum beta-lactams remained unchanged or, in some cases, the activity was enhanced. The affinity of the enzyme for these poorer substrates (as defined by the dissociation constant, K(s)) invariably increased. Computation of the microscopic rate constants (k(2) and k(3)) for turnover of these poorer substrates indicated either that the rate-limiting step in turnover was the deacylation step (governed by k(3)) or that neither the acylation nor deacylation became the sole rate-limiting step. In a few instances, the rate constants for both the acylation (k(2)) and deacylation (k(3)) of the extended-spectrum beta-lactamase were enhanced. These results were investigated further by molecular modeling experiments, using the crystal structure of the TEM(pUC19) beta-lactamase. Our results indicated that severe steric interactions between the large 7beta functionalities of the expanded-spectrum beta-lactams and the Omega-loop secondary structural element near the active site were at the root of the low affinity by the enzyme for these substrates. These conclusions were consistent with the proposal that the aforementioned mutations would enlarge the active site, and hence improve affinity.  相似文献   

18.
The interaction between tazobactam and several chromosome- and plasmid-encoded (TEM, SHV, PSE types) class A and C beta-lactamases was studied by spectrophotometry. Tazobactam behaved as a competitive inhibitor or inactivator able to restore in several cases the efficiency of piperacillin as a partner beta-lactam. A detailed kinetic analysis permitted measurement of the acylation efficiency for some cephalosporinases and broad-spectrum beta-lactamases; the presence of a turn-over of acyl-enzyme complex was also evaluated.  相似文献   

19.
The interaction between tazobactam and several chromosome- and plasmid-encoded (TEM, SHV, PSE types) class A and C beta-lactamases was studied by spectrophotometry. Tazobactam behaved as a competitive inhibitor or inactivator able to restore in several cases the efficiency of piperacillin as a partner beta-lactam. A detailed kinetic analysis permitted measurement of the acylation efficiency for some cephalosporinases and broad-spectrum beta-lactamases; the presence of a turn-over of acyl-enzyme complex was also evaluated.  相似文献   

20.
The crystallographic structure of the Enterobacter cloacae GC1 extended-spectrum class C beta-lactamase, inhibited by a new 7-alkylidenecephalosporin sulfone, has been determined by X-ray diffraction at 100 K to a resolution of 1.6 A. The crystal structure was solved by molecular replacement using the unliganded structure [Crichlow et al. (1999) Biochemistry 38, 10256-10261] and refined to a crystallographic R-factor equal to 0.183 (R(free) 0.208). Cryoquenching of the reaction of the sulfone with the enzyme produced an intermediate that is covalently bound via Ser64. After acylation of the beta-lactam ring, the dihydrothiazine dioxide ring opened with departure of the sulfinate. Nucleophilic attack of a side chain pyridine nitrogen atom on the C6 atom of the resultant imine yielded a bicyclic aromatic system which helps to stabilize the acyl enzyme to hydrolysis. A structural assist to this resonance stabilization is the positioning of the anionic sulfinate group between the probable catalytic base (Tyr150) and the acyl ester bond so as to block the approach of a potentially deacylating water molecule. Comparison of the liganded and unliganded protein structures showed that a major movement (up to 7 A) and refolding of part of the Omega-loop (215-224) accompanies the binding of the inhibitor. This conformational flexibility in the Omega-loop may form the basis of an extended-spectrum activity of class C beta-lactamases against modern cephalosporins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号