首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared in vitro and in vivo induction of IL-12 (p40) and IFN-gamma by mouse cells stimulated with Toxoplasma gondii, Trypanosoma cruzi, and different species of Leishmania. Spleen cells cultured in vitro with T. cruzi or T. gondii, but not with Leishmania, produced IL-12 (p40) and IFN-gamma. Accordingly, IL-12 (p40) was produced by macrophages stimulated in vitro with live T. cruzi or T. gondii or membrane glycoconjugates obtained from trypomastigotes or tachyzoites. No IL-12 production was detected when macrophages were stimulated with live parasites or glycoconjugates from Leishmania, regardless of priming with IFN-gamma. In vivo, only T. cruzi and T. gondii induced the synthesis of IL-12 and IFN-gamma by mouse spleen cells after intraperitoneal injection of parasites. When injected subcutaneously, live Leishmania sp. induced IL-12 (p40) and IFN-gamma production by draining lymph node cells, albeit the levels were slightly lower than those induced by infection with T. gondii or T. cruzi using the same route. Together our results indicate that under different conditions, the intracellular protozoa T. gondii and T. cruzi are more potent stimulators of IL-12 and IFN-gamma synthesis by host immune cells than parasites of the genus Leishmania.  相似文献   

2.
In murine infection with Trypanosoma cruzi, immune responsiveness to parasite and non-parasite Ag becomes suppressed during the acute phase of infection, and this suppression is known to extend to the production of IL-2. To determine whether suppression of lymphokine production was specific for IL-2, or was a generalized phenomenon involving suppressed production of other lymphokines, we have begun an investigation of the ability of mice to produce of a number of lymphokines during infection, initially addressing this question by studying IFN-gamma production. Supernatants from Con A-stimulated spleen cells from infected resistant (C57B1/6) and susceptible (C3H) mice were assayed for IFN-gamma. Supernatants known to be suppressed with respect to IL-2 production from both mouse strains contained IFN-gamma at or above that of supernatants from normal spleen cells. Samples were assayed in an IFN bioassay to ensure that the IFN-gamma detected by ELISA was biologically active. Thus, suppression during T. cruzi infection does not extend to the production of all lymphokines. The stimulation of IFN-gamma production was confirmed by detection of IFN-gamma mRNA in unstimulated spleen cells from infected animals, and in Con A, Con A + PMA, and in some cases, parasite Ag-stimulated spleen cells from infected animals. IFN-gamma mRNA levels in mitogen-stimulated spleen cells equalled or exceeded those found in similarly stimulated normal cells. In contrast, stimulated spleen cells from infected animals had reduced levels of IL-2 mRNA relative to normal spleen cells. Thus at both the protein and mRNA level, IFN-gamma production is stimulated by T. cruzi infection, whereas IL-2 production is suppressed. Serum IFN-gamma in infected C57B1/6 and C3H mice was detected 8 days after infection, peaked on day 20 of infection, and subsequently fell, but remained detectable at low levels throughout the life of infected mice. Infected animals were depleted of cell populations known to be capable of producing IFN-gamma, and Thy-1+, CD4-, CD8-, NK- cells, and to a lesser degree, CD4+ and CD8+ cells were found to be responsible for the production of IFN-gamma during infection. We also report that IL-2 can induce IFN-gamma production in vitro and in vivo by spleen cells from infected animals, and that IL-2 can synergize with epimastigote or trypomastigote antigen to produce high levels of IFN-gamma comparable to those found in supernatants from mitogen-stimulated cells.  相似文献   

3.
Co-culture of blood forms of Trypanosoma cruzi, the causative agent of Chagas' disease, with human PBMC impaired the capacity of T lymphocytes to express surface receptors for IL-2. This effect was evidenced by marked reductions in both the proportion of Tac+ cells and the density of Tac Ag on the surface of the positive cells, determined by flow cytometry. The extent of the inhibition increased with parasite concentration. Under optimal or suboptimal conditions of stimulation with either PHA or monoclonal anti-CD3, specific for an epitope of the T3-Ti human T cell Ag receptor complex, the presence of T. cruzi curtailed the capacity of T lymphocytes to proliferate and express Il-2R but did not affect IL-2 production. Furthermore, the addition of exogenous IL-2 did not restore the responsiveness of suppressed human lymphocytes but did when mouse lymphocytes were used instead. Therefore, unlike mouse lymphocytes, human lymphocyte suppression by T. cruzi did not involve deficient IL-2 production and was accompanied by impaired IL-2 utilization. Co-culture of human monocytes/macrophages with suppressive concentrations of T. cruzi increased IL-1 production, and the parasite did not decrease IL-1 secretion stimulated by a bacterial LPS. Therefore, the suppression of IL-2R expression and lymphoproliferation is not likely to have been an indirect consequence of insufficient IL-1 production due to infection of monocytes or macrophages. We have shown that suppression of human lymphocyte proliferation by T. cruzi is not caused by nutrient consumption, absorption of IL-2, lymphocyte killing, or mitogen removal by the parasite. Therefore, these results uncover a novel suppressive mechanism induced by T. cruzi, involving inhibited expression of IL-2R after lymphocyte activation and rendering T cells unable to receive the IL-2 signal required for continuation of their cell cycle and mounting effective immune responses.  相似文献   

4.
Infection of mice with Trypanosoma cruzi elicits the production of parasite-specific antibodies which reach high levels and remain elevated for at least 105 days of infection. The more susceptible C3H(He) mouse actually has a higher level of "natural" antibodies for T. cruzi but may show a greater lag time in the production of antibodies in response to infection than the more resistant C57BL/6 mouse. Comparison of the kinetics of antibody production against T. cruzi and the numbers of immunoglobulin-producing cells in the spleen during the course of infection suggests that a large number of the immunoglobulin-producing cells are probably producing antibodies directed against the parasite and are not the result of an exhaustive polyclonal B-cell activation. Cell numbers in the spleen change dramatically both in total numbers and in the percentage of different cell types during infection with T. cruzi. The percentage of T cells in the spleen remains relatively unchanged throughout infection in both mouse strains tested but numbers of Ig-positive cells decrease markedly during the acute phase of infection while macrophage numbers increase up to sixfold. Cell numbers and proportions of B cells, T cells, and macrophages return to near normal values by 105 days of infection in the C57BL/6 mouse.  相似文献   

5.
6.
Recent studies have revealed an important role for CTLA-4 as a negative regulator of T cell activation. In the present study, we evaluated the importance of CTLA-4 to the immune response against the intracellular protozoan, Trypanosoma cruzi, the causative agent of Chagas' disease. We observed that the expression of CTLA-4 in spleen cells from naive mice cultured in the presence of live trypomastigote forms of T. cruzi increases over time of exposure. Furthermore, spleen cells harvested from recently infected mice showed a significant increase in the expression of CTLA-4 when compared with spleen cells from noninfected mice. Blockage of CTLA-4 in vitro and/or in vivo did not restore the lymphoproliferative response decreased during the acute phase of infection, but it resulted in a significant increase of NO production in vivo and in vitro. Moreover, the production of IFN-gamma in response to parasite Ags was significantly increased in spleen cells from anti-CTLA-4-treated infected mice when compared with the production found in cells from IgG-treated infected mice. CTLA-4 blockade in vivo also resulted in increased resistance to infection with the Y and Colombian strains of T. cruzi. Taken together these results indicate that CTLA-4 engagement is implicated in the modulation of the immune response against T. cruzi by acting in the mechanisms that control IFN-gamma and NO production during the acute phase of the infection.  相似文献   

7.
Interferon (IFN)-gamma production, stimulated by the addition of exogenous interleukin (IL) 2, T cell mitogens, or tuberculin purified protein derivative (PPD) was studied in cultures of separated human mononuclear cells or unseparated peripheral blood leukocytes (PBL). IFN-gamma was induced by the addition of IL 2 to cultures of otherwise unstimulated cells. The minimal concentration of exogenous IL 2 required to cause a reproducible stimulation of IFN-gamma was about 10 U/ml, i.e., approximately 50 times the minimal concentration required to stimulate proliferation in an IL 2-dependent murine cytotoxic T cell line. Approximately 500 to 1000 IL 2 U/ml were required to produce maximal stimulation of IFN-gamma production in otherwise unstimulated cultures. Monoclonal antibody anti-Tac, specific for an epitope associated with the IL 2 receptor (IL 2 R), inhibited IFN-gamma induction by exogenous IL 2 less strongly than induction by phytohemagglutinin (PHA) or concanavalin A (Con A). The highest degree of inhibition was exerted by anti-Tac on IFN-gamma production stimulated with PPD. Stimulation of IFN-gamma induction by exogenous IL 2 and the inhibitory action of anti-Tac on IFN-gamma production were also seen in cultures of irradiated (2000 R) cells. Treatment of cells with subinducing doses of Con A or phorbol myristate acetate increased IFN-gamma induction by exogenous IL 2. Taken together, the data suggest that endogenously generated IL 2 is a major mediator of IFN-gamma induction in PBL cultures stimulated with antigens or T cell mitogens.  相似文献   

8.
The participation of type I IFNs (IFN-I) in NO production and resistance to Trypanosoma cruzi infection was investigated. Adherent cells obtained from the peritoneal cavity of mice infected by the i.p. route produced NO and IFN-I. Synthesis of NO by these cells was partially inhibited by treatment with anti-IFN-alphabeta or anti-TNF-alpha Abs. Compared with susceptible BALB/c mice, peritoneal cells from parasite-infected resistant C57BL/6 mice produced more NO (2-fold), IFN-I (10-fold), and TNF-alpha (3.5-fold). Later in the infection, IFN-I levels measured in spleen cell (SC) cultures from 8-day infected mice were greater in C57BL/6 than in infected BALB/c mice, and treatment of the cultures with anti-IFN-alphabeta Ab reduced NO production. IFN-gamma or IL-10 production by SCs was not different between the two mouse strains; IL-4 was not detectable. Treatment of C57BL/6 mice with IFN-I reduced parasitemia levels in the acute phase of infection. Mice deprived of the IFN-alphabetaR gene developed 3-fold higher parasitemia levels in the acute phase in comparison with control 129Sv mice. Production of NO by peritoneal macrophages and SCs was reduced in mice that lacked signaling by IFN-alphabeta, whereas parasitism of macrophages was heavier than in control wild-type mice. We conclude that IFN-I costimulate NO synthesis early in T. cruzi infection, which contributes to a better control of the parasitemia in resistant mice.  相似文献   

9.
Interferon (IFN)-inducing activity of hydrogen peroxide in human peripheral mononuclear cells was investigated. Among the mononuclear cells, purified nonadherent cells produced IFN, but not B cells and monocytes. The maximal titer of IFN by purified nonadherent cells was observed after a 72-hr cultivation in the presence of 10(-2) mM H2O2 without affecting their viability. Furthermore, the purified nonadherent cells, but not the unpurified mononuclear cells, showed an augmented cytotoxicity to K562 when stimulated with hydrogen peroxide. By using Percoll discontinuous density gradient centrifugation, peripheral blood nonphagocytic and nonadherent mononuclear cells were divided into the low and high density fractions for which natural killer (NK) cells and T cells were enriched, respectively. The NK-enriched low density fractions, but not the T cell-enriched high density fractions, showed IFN production by the stimulation of hydrogen peroxide. IFN production as well as large granular lymphocytes and HNK-1+, Leu-11+ cells of the NK-enriched fractions were abrogated by treatment of the cells with monoclonal antibody against human NK cells (HNK-1+) but not against T cells (OKT3) in the presence of complement. Moreover, hydrogen peroxide-inducing IFN production seems to be regulated by monocytes. The antiserum neutralizing IFN-alpha and IFN-beta failed to neutralize substantially IFN-produced NK cells. The treatment with either pH 2 or antiserum-neutralizing human IFN-gamma resulted in marked reduction, indicating that a major part of IFN was IFN-gamma. The purified nonadherent cells showed IFN production and augmented cytotoxicity when cultured separately from activated macrophages by opsonized zymosan; furthermore, both IFN production and enhancement of cytotoxicity were abrogated by catalase. These results suggest that both exogenous and endogenous hydrogen peroxide might be responsible for a part of immunoregulation.  相似文献   

10.
Suppression of host lymphoproliferative responses to mitogens and Ag is characteristically seen during acute infection with the protozoan parasite Trypanosoma cruzi. We investigated the reciprocal regulation of prostaglandins (PG), TNF-alpha, and nitric oxide (NO) production and their effects on cytokine production and lymphoproliferative responses to parasite Ag and to Con A by spleen cells (SC) from T.-cruzi-infected mice. Large amounts of PGE2, TNF-alpha, and NO were produced during infection. TNF-alpha stimulated PG and NO synthesis, while both mediators inhibited TNF-alpha synthesis. Blocking PG also reduced NO synthesis indicating that PG stimulate NO production. Treatment with indomethacin or NMLA stimulated lymphoproliferation on days 6 and 22 of infection; on day 14, when suppression of proliferation and NO production was maximal, combined inhibition of NO and PG production restored parasite Ag specific and Con A proliferative responses. Blocking PG or NO production increased IL-2, IFN-gamma, and TNF-alpha, but not IL-12 production by SC; IL-10 levels were not reduced. Indomethacin-treated infected mice had higher mortality compared to untreated infected animals. The data indicate that PG, together with NO and TNF-alpha, participate in a complex circuit that controls lymphoproliferative and cytokine responses in T. cruzi infection.  相似文献   

11.
IL-12p35-deficient (IL-12p35(-/-)) mice were highly susceptible to Trypanosoma cruzi infection and succumbed during acute infection, demonstrating the crucial importance of endogenous IL-12 in resistance to experimental Chagas' disease. Delayed immune responses were observed in mutant mice, although comparable IFN-gamma and TNF-alpha blood levels as in wild-type mice were detected 2 wk postinfection. In vivo and in vitro analysis demonstrated that T cells, but not NK cells, were recruited to infected organs. Analysis of mice double deficient in the recombinase-activating gene 2 (RAG2) and IL-12p35, as well as studies involving T cell depletion, identified CD4(+) T cells as the cellular source for IL-12-independent IFN-gamma production. IL-18 was induced in IL-12p35(-/-) mice and was responsible for IFN-gamma production, as demonstrated by in vivo IL-18 neutralization studies. In conclusion, evidence is presented for an IL-12-independent IFN-gamma production in experimental Chagas' disease that is T cell and IL-18 dependent.  相似文献   

12.
Many different cell populations or lineages participate in the resistance to Trypanosoma cruzi infection. gammadelta T cells may also take part in a network of interactions that lead to control of T. cruzi infection with minimal tissue damage by controlling alphabeta T cell activation, as was previously suggested. However, the gammadelta T cell population is not homogeneous and its functions might vary, depending on T cell receptor usage or distinct stimulatory conditions. In this study, we show that the in vivo depletion of V gamma 1-bearing gammadelta T cells, prior to the infection of BALB/c mice with the Y strain of T. cruzi, induces an increased susceptibility to the infection with lower amounts of IFN-gamma being produced by conventional CD4+ or CD8+ T cells. In addition, the production of IL-4 by spleen T cells in V gamma 1-depleted mice was increased and the production of IL-10 remained unchanged. Since V gamma 1(+) gammadelta T cell depletion diminished the conversion of naive to memory/activated CD4 T cells and the production of IFN-gamma during the acute infection, these cells appear to function as helper cells for conventional CD4+ Th1 cells. Depletion of V gamma 1(+) cells also reduced the infection-induced inflammatory infiltrate in the heart and skeletal muscle. More importantly, V gamma 1(+) cells were required for up-regulation of CD40L in CD4+ and CD8+ T cells during infection. These results show that a subset of gammadelta T cells (V gamma 1(+)), which is an important component of the innate immune response, up-regulates the type 1 arm of the adaptative immune response, during T. cruzi infection.  相似文献   

13.
The innate immune system is the first mechanism of vertebrate defense against pathogen infection. In this study, we present evidence for a novel immune evasion mechanism of Trypanosoma cruzi, mediated by host cell plasma membrane-derived vesicles. We found that T. cruzi metacyclic trypomastigotes induced microvesicle release from blood cells early in infection. Upon their release, microvesicles formed a complex on the T. cruzi surface with the complement C3 convertase, leading to its stabilization and inhibition, and ultimately resulting in increased parasite survival. Furthermore, we found that TGF-β-bearing microvesicles released from monocytes and lymphocytes promoted rapid cell invasion by T. cruzi, which also contributed to parasites escaping the complement attack. In addition, in vivo infection with T. cruzi showed a rapid increase of microvesicle levels in mouse plasma, and infection with exogenous microvesicles resulted in increased T. cruzi parasitemia. Altogether, these data support a role for microvesicles contributing to T. cruzi evasion of innate immunity.  相似文献   

14.
T and NK cells play a key role in resistance to Trypanosoma cruzi infections, mainly through IFN-gamma production. The expression of T and NK cells surface markers was studied in NWNA spleen cells of resistant C3H and susceptible BALB/c mice that release IFN-gamma in the early and late acute infection, respectively. In the progressively enlarged spleens, we found: (a) an increased percentage and number of NK blast cells as early as at 2 days post-infection (pi), (b) an enrichment of T and NK cells, in both the total and blast populations, during the late acute phase. At 17 days pi, there was also an accumulation of TCR- alphabeta+DX5+, NKT cells, mainly in resistant mice. At 21 days pi, the enrichment of NK cells ceased, while spleen cells and the T cell compartment continued their expansion. In the chronic stage, TCR-alphabeta+ blasts were expanded in both mouse strains, but NK blasts increased only in BALB/c that, unlike C3H mice, release IFN-gamma. As T and NK cell proliferation is not always associated to IFN-gamma release the experimental downregulation of their expansion to avoid tissue damage could be explored.  相似文献   

15.
IL-21 is a cytokine produced by CD4+ T cells that has been reported to regulate human, as well as, mouse T and NK cell function and to inhibit Ag-induced IgE production by mouse B cells. In the present study, we show that human rIL-21 strongly enhances IgE production by both CD19+ CD27- naive, and CD19+ CD27+ memory B cells, stimulated with anti-CD40 mAb and rIL-4 and that it promotes the proliferative responses of these cells. However, rIL-21 does not significantly affect anti-CD40 mAb and rIL-4-induced Cepsilon promoter activation in a gene reporter assay, nor germline Cepsilon mRNA expression in purified human spleen or peripheral blood B cells. In contrast, rIL-21 inhibits rIL-4-induced IgE production in cultures of PBMC or total splenocytes by an IFN-gamma-dependent mechanism. The presence of a polymorphism (T-83C), in donors heterozygous for this mutation was found to be associated not only with lower rIL-21-induced IFN-gamma production levels, but also with a lower sensitivity to the inhibitory effects of IL-21 on the production of IgE, compared with those in donors expressing the wild-type IL-21R. Taken together, these results show that IL-21 differentially regulates IL-4-induced human IgE production, via its growth- and differentiation-promoting capacities on isotype-, including IgE-, committed B cells, as well as via its ability to induce IFN-gamma production, most likely by T and NK cells, whereas the outcome of these IL-21-mediated effects is dependent on the presence of a polymorphism in the IL-21R.  相似文献   

16.
This study aimed to evaluate whether experimental Chagas disease in acute phase under benznidazole therapy can cause DNA damage in peripheral blood, liver, heart, and spleen cells or induce nitric oxide synthesis in spleen cells. Twenty Balb/c mice were distributed into four groups: control (non-infected animals); Trypanosoma cruzi infected; T. cruzi infected and submitted to benznidazole therapy; and only treated with benznidazole. The results obtained with the single cell gel (comet) assay showed that T. cruzi was able induce DNA damage in heart cells of both benznidazole treated or untreated infected mice. Similarly, T. cruzi infected animals showed an increase of DNA lesions in spleen cells. Regarding nitric oxide synthesis, statistically significant differences (p<0.05) were observed in all experimental groups compared to negative control, the strongest effect observed in the T. cruzi infected group. Taken together, these results indicate that T. cruzi may increase the level of DNA damage in mice heart and spleen cells. Probably, nitric oxide plays an important role in DNA damaging whereas benznidazole was able to minimize induced T. cruzi genotoxic effects in spleen cells.  相似文献   

17.
Histamine, a modulator of various immune functions, inhibits the production of interleukin 2 (IL-2) and interferon-gamma (IFN-gamma) by polyclonally activated human blood mononuclear cells. The histamine-induced inhibition of IFN-gamma synthesis can be completely eliminated by the addition of recombinant IL-2. The IFN-gamma synthesis by T8+ lymphocytes is highly dependent on IL-2 supplied either by the IL-2 producing T4+ lymphocytes or through exogenous addition of recombinant IL-2. It is concluded that histamine acts primarily on the interleukin 2 synthesis by the T4+ lymphocytes and as a consequence of this inhibition, interferon-gamma production is reduced.  相似文献   

18.
A HLA-DR1 transgenic mouse (NOD/scid-DR1) was derived by breeding the existing B10.M/J-[Tg]DR1 mouse with the NOD/scid mouse. The intention was to enhance engraftment of human T cells by providing human class II elements in the tissues. Thymus and spleen fragments from adult NOD/scid-DR1 mice were transplanted under the syngeneic kidney capsules, followed by injection of human cord blood mononuclear cells (CBMNC) into transplanted tissues. FACS analyses showed that human T and B cells were consistently detected in the peripheral blood and spleen, of the chimeric mice. An average of 20% of human cells was found in the spleen and the engrafted thymus/spleen tissues. Furthermore, human cells from these tissues could proliferate with anti-human CD3 antibody and these mice could generate humoral and cellular responses to allogeneic human cells. Cytokines, such as IL-10, GMCSF, IFN-gamma, and TNF-alpha were also detected in the supernatants of the cultured human cells from the chimeric mice, when they were stimulated with allogeneic cells. Therefore, a novel mouse model with functional circulating human T and B cells was established that would facilitate the exploration of vaccine, the disease processes of autoimmunity, HIV infection, and human cancer.  相似文献   

19.
Nanogram quantities of the bacterial superantigen Staphylococcal Enterotoxin A (SEA) induced significant amounts of extracellular IL-1 alpha and IL-1 beta in human peripheral blood mononuclear cells. Induction of maximal IL-1 alpha and IL-1 beta levels by lipopolysaccharide (LPS) required microgram quantities. LPS induced detectable extracellular IL-1 content within 3-6 hr and maximal levels were detected already after 12 hr. Induction of IL-1 production by SEA showed a delayed release with peak values after 24-48 hr. IL-1 beta was the major species of IL-1 seen in both SEA- and LPS-stimulated culture supernatants. SEA was in general a relatively stronger inducer of extracellular IL-1 alpha than LPS. SEA-induced extracellular IL-1 production in human monocytes was entirely dependent on the presence of T cells, whereas addition of T cells to LPS-stimulated purified human monocytes only marginally enhanced the extracellular IL-1 production. The capacity to induce extracellular IL-1 production in monocytes in response to SEA was high in the CD4+ 45RO+ memory T cell subset, whereas CD4+ 45RA+ naive T cells and CD8+ T cells had lower IL-1-inducing capacity. The T cell help for IL-1 production could not be replaced by a panel of T cell-derived recombinant lymphokines added to SEA-stimulated monocytes, including IFN-gamma and TNF, indicating the participation of cell membrane-bound ligands or hitherto unidentified soluble mediators.  相似文献   

20.
Innate and adaptive immunity collaborate in the protection of intracellular pathogens including Trypanosoma cruzi infection. However, the parasite molecules that regulate the host immune response have not been fully identified. We previously demonstrated that the immunisation of C57BL/6 mice with cruzipain, an immunogenic T. cruzi glycoprotein, induced a strong specific T-cell response. In this study, we demonstrated that active immunisation with cruzipain was able to stimulate nitric oxide (NO) production by splenocytes. Immune cells also showed increased inducible nitric oxide synthase protein and mRNA expression. Spleen adherent cells secreted high levels of IFN-gamma and IL-12. Microbicidal activity in vitro was mainly mediated by reactive nitrogen intermediaries and IFN-gamma, as demonstrated by the inhibitory effects of NO synthase inhibitor or by IFN-gamma neutralisation. Specific T-cells were essential for NO, IFN-gamma and TNF-alpha production. Furthermore, we reported that cruzipain enhanced CD80 and major histocompatibility complex-II molecule surface expression on F4/80+ spleen cells. Interestingly, we also showed that cruzipain up-regulated toll like receptor-2 expression, not only in F4/80+ but also in total spleen cells which may be involved in the effector immune response. Our findings suggest that a single parasite antigen such as cruzipain, through adaptive immune cells and cytokines, can modulate the macrophage response not only as antigen presenting cells, but also as effector cells displaying enhanced microbicidal activity with reactive nitrogen intermediary participation. This may represent a mechanism that contributes to the immunoregulatory process during Chagas disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号