首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
RNase P is the endonuclease that removes 5' extensions from tRNA precursors. In its best-known form, the enzyme is composed of a catalytic RNA and a protein moiety variable in number and mass. This ribonucleoprotein enzyme is widely considered ubiquitous and apparently reached its highest complexity in the eukaryal nucleus, where it is typically composed of at least ten subunits. Here, we show that in the protist Trypanosoma brucei, two proteins are the sole forms of RNase P. They localize to the nucleus and the mitochondrion, respectively, and have RNase P activity each on their own. The protein-RNase P is, moreover, capable of replacing nuclear RNase P in yeast cells. This shows that complex ribonucleoprotein structures and RNA catalysis are not necessarily required to support tRNA 5' end formation in eukaryal cells.  相似文献   

4.
The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.  相似文献   

5.
RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.  相似文献   

6.
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.  相似文献   

7.
8.
《The Journal of cell biology》1995,131(5):1173-1182
In Trypanosoma brucei, the products of two genes, ESAG 6 and ESAG 7, located upstream of the variant surface glycoprotein gene in a polycistronic expression site form a glycosylphosphatidylinositol- anchored transferrin-binding protein (TFBP) complex. It is shown by gel filtration and membrane-binding experiments that the TFBP complex is heterodimeric and binds one molecule of transferrin with high affinity (2,300 binding sites per cell; KD = 2.1 nM for the dominant expression site from T. brucei strain 427 and KD = 131 nM for ES1.3A of the EATRO 1125 stock). The ternary transferrin-TFBP complexes with iron-loaded or iron-free ligand are stable between pH 5 and 8. Cellular transferrin uptake can be inhibited by 90% with Fab fragments from anti-TFBP antibodies. After uptake, the TFBP complex and its ligand are routed to lysosomes where transferrin is proteolytically degraded. While the degradation products are released from the cells, iron remains cell associated and the TFBP complex is probably recycled to the membrane of the flagellar pocket, the only site for exo- and endocytosis in this organism. It is concluded that the TFBP complex serves as the receptor for the uptake of transferrin in T. brucei by a mechanism distinct from that in mammalian cells.  相似文献   

9.
10.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

11.
Kinetoplastid mitochondrial RNA editing, the insertion and deletion of U residues, is catalyzed by sequential cleavage, U addition or removal, and ligation reactions and is directed by complementary guide RNAs. We have purified a approximately 20S enzymatic complex from Trypanosoma brucei mitochondria that catalyzes a complete editing reaction in vitro. This complex possesses all four activities predicted to catalyze RNA editing: gRNA-directed endonuclease, terminal uridylyl transferase, 3' U-specific exonuclease, and RNA ligase. However, it does not contain other putative editing complex components: gRNA-independent endonuclease, RNA helicase, endogenous gRNAs or pre-mRNAs, or a 25 kDa gRNA-binding protein. The complex is composed of eight major polypeptides, three of which represent RNA ligase. These findings identify polypeptides representing catalytic editing factors, reveal the nature of this approximately 20S editing complex, and suggest a new model of editosome assembly.  相似文献   

12.
Crystals were produced from variant surface glycoproteins (VSG) of Trypanosoma brucei brucei antigenic variants MITat 1.2, 1.6, and ILTat 1.22, 1.23, 1.24, 1.25, and 1.26. Purified VSGs had molecular weights from 60,000 to 68,000 on sodium dodecyl sulfate-polyacrylamide gels, whereas the crystals obtained were composed of polypeptides of approximate Mr 40,000-50,000. Amino-terminal amino acid sequences determined from the crystallized VSGs were identical to sequences obtained from the respective intact proteins, indicating that the crystals contained VSG amino-terminal fragments. Crystallization conditions and lattice dimensions of the crystals are given.  相似文献   

13.
The RNA editing that produces most functional mRNAs in trypanosomes is catalysed by a multiprotein complex. This complex catalyses the endoribonucleolytic cleavage, uridylate addition and removal, and RNA ligation steps of the editing process. Enzymatic and in vitro editing analyses reveal that each catalytic step contributes to the specificity of the editing and, together with the interaction between gRNA and the mRNA, results in precisely edited mRNAs. Tandem mass spectrometric analysis was used to identify the genes for several components of biochemically purified editing complexes. Their identity and presence in the editing complex were confirmed using immunochemical analyses utilizing mAbs specific to the editing complex components. The genes for two RNA ligases were identified. Genetic studies show that some, but not all, of the components of the complex are essential for editing. The TbMP52 RNA ligase is essential for editing while the TbMP48 RNA ligase is not. Editing was found to be essential in bloodstream form trypanosomes. This is surprising because mutants devoid of genes encoding RNAs that become edited survive as bloodstream forms but encouraging since editing complex components may be targets for chemotherapy.  相似文献   

14.
15.
African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human‐infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance‐associated protein (SRA protein), protects against ApoL1‐mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA‐mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesiense EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well‐characterized endosomal markers. By three‐dimensional deconvolved immunofluorescence single‐cell analysis, combined with double‐labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.  相似文献   

16.
A mitochondrial inner membrane protein, designated MIX, seems to be essential for cell viability. The deletion of both alleles was not possible, and the deletion of a single allele led to a loss of virulence and aberrant mitochondrial segregation and cell division in Leishmania major. However, the mechanism by which MIX exerts its effect has not been determined. We show here that MIX is also expressed in the mitochondrion of Trypanosoma brucei, and using RNA interference, we found that its loss leads to a phenotype that is similar to that described for Leishmania. The loss of MIX also had a major effect on cytochrome c oxidase activity, on the mitochondrial membrane potential, and on the production of mitochondrial ATP by oxidative phosphorylation. Using a tandem affinity purification tag, we found that MIX is associated with a multiprotein complex that contains subunits of the mitochondrial cytochrome c oxidase complex (respiratory complex IV), the composition of which was characterized in detail. The specific function of MIX is unknown, but it appears to be important for the function of complex IV and for mitochondrial segregation and cell division in T. brucei.  相似文献   

17.
18.
The parasite Trypanosoma brucei, the causative agent of sleeping sickness across sub-Saharan Africa, depends on a remarkable U-insertion/deletion RNA editing process in its mitochondrion. A approximately 20 S multi-protein complex, called the editosome, is an essential machinery for editing pre-mRNA molecules encoding the majority of mitochondrial proteins. Editosomes contain a common core of twelve proteins where six OB-fold interaction proteins, called A1-A6, play a crucial role. Here, we report the structure of two single-strand nucleic acid-binding OB-folds from interaction proteins A3 and A6 that surprisingly, form a heterodimer. Crystal growth required the assistance of an anti-A3 nanobody as a crystallization chaperone. Unexpectedly, this anti-A3 nanobody binds to both A3(OB) and A6, despite only ~40% amino acid sequence identity between the OB-folds of A3 and A6. The A3(OB)-A6 heterodimer buries 35% more surface area than the A6 homodimer. This is attributed mainly to the presence of a conserved Pro-rich loop in A3(OB). The implications of the A3(OB)-A6 heterodimer, and of a dimer of heterodimers observed in the crystals, for the architecture of the editosome are profound, resulting in a proposal of a 'five OB-fold center' in the core of the editosome.  相似文献   

19.
The chromosomal ends of Trypanosoma brucei, like those of most eukaryotes, contain conserved 5'-TTAGGG-3' repeated sequences and are maintained by the action of telomerase. Fractionated T. brucei cell extracts with telomerase activity were used as a source of potential regulatory factors or telomerase-associated components that might interact with T. brucei telomeres. Electrophoretic mobility shift assays and UV cross-linking were used to detect possible single-stranded telomeric protein.DNA complexes and to estimate the approximate size of the protein constituents. Three single-stranded telomeric protein.DNA complexes were observed. Complex C3 was highly specific for the G-strand telomeric repeat sequence and shares biochemical characteristics with G-rich, single-stranded telomeric binding proteins and with components of the telomerase holoenzyme described in yeast, ciliates, and humans. Susceptibility to RNase A or chemical nuclease (hydroxyl radical) pre-treatment showed that complex C3 was tightly associated with an RNA component. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry was used to estimate the molecular mass of the peptides obtained by in-gel Lys-C digestion of low abundance C3-associated proteins. The molecular masses of the peptides showed no homologies with other proteins from trypanosomes or with any protein in the data bases screened.  相似文献   

20.
The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号