共查询到20条相似文献,搜索用时 0 毫秒
1.
The site of synthesis of mitochondrial proteins in Krebs II ascites-tumour cells 总被引:2,自引:3,他引:2 下载免费PDF全文
At 22° in Earle's medium, Krebs cells synthesize proteins. After a brief `pulse' with [14C]valine followed by a `chase' of [12C]valine the radioactivity appears first in microsomes and is transferred after `chase' to the cell sap. Kinetics of labelling of the mitochondrial protein are different from that of either microsomal or cell-sap protein. When Krebs cells in buffer are mixed with ribonuclease in water the nuclease penetrates the cell membrane. The ribonuclease-treated cells are still viable but have lost most of their cytoplasmic ribosomes (electron micrograph). Such cells still synthesize mitochondrial protein at near normal rate but synthesis of microsomal protein is severely inhibited. The results indicate that some mitochondrial proteins are synthesized independently of the microsome–cell-sap system. 相似文献
2.
C H Seiter R Margalit R A Perreault 《Biochemical and biophysical research communications》1979,86(3):473-477
Cytochrome was chemically coupled to cytochrome oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome reaction with oxidase, binds to the same oxidase subunit as does cytochrome , subunit IV in the gel system used. 相似文献
3.
The mammalian type cytochrome c of Ustilago sphaerogena 总被引:2,自引:0,他引:2
4.
Francia F Giachini L Boscherini F Venturoli G Capitanio G Martino PL Papa S 《FEBS letters》2007,581(4):611-616
EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc. 相似文献
5.
The location of CuA in mammalian cytochrome c oxidase 总被引:1,自引:0,他引:1
Imposition of a protonmotive force across the inner membrane of coupled cyanide-inhibited, beef heart mitochondria by addition of ATP causes reduction of cytochrome c and CuA with concomitant oxidation of haem aA. The data are consistent with previous demonstrations of an intramembrane location of haem aA but further indicate that CuA is very close to the cytosolic surface of the membrane. The implications of this finding for electron transfer route and the site of the proton pumping chemistry are discussed. 相似文献
6.
Mapping of the cytochrome c binding site on cytochrome c oxidase 总被引:1,自引:0,他引:1
7.
The structure of the cytochrome a3-CuB site of mammalian cytochrome c oxidase as probed by MCD and EPR spectroscopy 总被引:3,自引:0,他引:3
A J Thomson C Greenwood P M Gadsby J Peterson D G Eglinton B C Hill P Nicholls 《Journal of inorganic biochemistry》1985,23(3-4):187-197
The nature of the complexes formed between cytochrome c oxidase and the three inhibitory ligands N3-, CN-, and S2- have been investigated by a combination of MCD and EPR spectroscopy. CN- forms a linear bridge between the Fe III a3 and CuB II, suggesting that the distance between these centers in the oxidized enzyme is between 5 and 5.25 A. This distance is too short to permit N3- to form a linear bridge and the evidence suggests this to be bent. In contrast S2- or SH- is unable to form any bridge and it seems likely that two SH- ions are bound by the bimetallic site, one to Fe III a3 and the other to CuB I. The significance of the a3-CuB distance in terms of oxygen binding and reduction is discussed. 相似文献
8.
Following different reports on the stoichiometry and configuration of NO binding to mammalian and bacterial reduced cytochrome c oxidase aa(3) (CcO), we investigated NO binding and dynamics in the active site of beef heart CcO as a function of NO concentration, using ultrafast transient absorption and EPR spectroscopy. We find that in the physiological range only one NO molecule binds to heme a(3), and time-resolved experiments indicate that even transient binding to Cu(B) does not occur. Only at very high (approximately 2 mM) concentrations a second NO is accommodated in the active site, although in a different configuration than previously observed for CcO from Paracoccus denitrificans [E. Pilet, W. Nitschke, F. Rappaport, T. Soulimane, J.-C. Lambry, U. Liebl and M.H. Vos. Biochemistry 43 (2004) 14118-14127], where we proposed that a second NO does bind to Cu(B). In addition, in the bacterial enzyme two NO molecules can bind already at NO concentrations of approximately 1 microM. The unexpected differences highlighted in this study may relate to differences in the physiological relevance of the CcO-NO interactions in both species. 相似文献
9.
J Stonehuerner P O'Brien L Geren F Millett J Steidl L Yu C A Yu 《The Journal of biological chemistry》1985,260(9):5392-5398
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c. 相似文献
10.
11.
Circular dichroism of mammalian cytochrome c 1 总被引:1,自引:0,他引:1
C A Yu F C Yong L Yu T E King 《Biochemical and biophysical research communications》1971,45(2):508-513
12.
Cytochrome c-dependent electron transfer and apoptosome activation require protein-protein binding, which are mainly directed by conformational and specific electrostatic interactions. Cytochrome c contains four highly conserved tyrosine residues, one internal (Tyr67), one intermediate (Tyr48), and two more accessible to the solvent (Tyr74 and Tyr97). Tyrosine nitration by biologically-relevant intermediates could influence cytochrome c structure and function. Herein, we analyzed the time course and site(s) of tyrosine nitration in horse cytochrome c by fluxes of peroxynitrite. Also, a method of purifying each (nitrated) cytochrome c product by cation-exchange HPLC was developed. A flux of peroxynitrite caused the time-dependent formation of different nitrated species, all less positively charged than the native form. At low accumulated doses of peroxynitrite, the main products were two mononitrated cytochrome c species at Tyr97 and Tyr74, as shown by peptide mapping and mass spectrometry analysis. At higher doses, all tyrosine residues in cytochrome c were nitrated, including dinitrated (i.e., Tyr97 and Tyr67 or Tyr74 and Tyr67) and trinitrated (i.e., Tyr97, Tyr74, and Tyr67) forms of the protein, with Tyr67 well represented in dinitrated species and Tyr48 being the least prone to nitration. All mono-, di-, and trinitrated cytochrome c species displayed an increased peroxidase activity. Nitrated cytochrome c in Tyr74 and Tyr67, and to a lesser extent in Tyr97, was unable to restore the respiratory function of cytochrome c-depleted mitochondria. The nitration pattern of cytochrome c in the presence of tetranitromethane (TNM) was comparable to that obtained with peroxynitrite, but with an increased relative nitration yield at Tyr67. The use of purified and well-characterized mono- and dinitrated cytochrome c species allows us to study the influence of nitration of specific tyrosines in cytochrome c functions. Moreover, identification of cytochrome c nitration sites in vivo may assist in unraveling the chemical nature of proximal reactive nitrogen species. 相似文献
13.
Isolation, subunit composition, and site of synthesis of human cytochrome c oxidase 总被引:13,自引:0,他引:13
Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1), the terminal oxidase of the respiratory chain in eucaryotic cells, has been purified from human placenta mitochondria. Seven polypeptides have been identified reproducibly by high-resolution electrophoresis of the enzyme complex through sodium dodecyl sulfate (Na-DodSO4)--urea polyacrylamide gels; these correspond closely in size to the subunits of beef heart cytochrome c oxidase. When HeLa cells, grown in suspension culture, were pulse-labeled with [35S]methionine in the presence of cycloheximide to inhibit cytoplasmic protein synthesis and chased with an excess of unlabeled methionine in the absence of the drug, the mitochondrially synthesized polypeptides were resolved into at least 17 components by NaDodSO4--urea polyacrylamide gel electrophoresis. After labeled HeLa mitochondria were mixed with human placenta mitochondria and the cytochrome c oxidase was isolated, three of the labeled components were found to copurify with the three largest subunits of the complex. We conclude that human cytochrome c oxidase contains seven subunits, the three largest of which are synthesized on mitochondrial ribosomes, while the other four are synthesized in the cytoplasm. 相似文献
14.
Helling S Vogt S Rhiel A Ramzan R Wen L Marcus K Kadenbach B 《Molecular & cellular proteomics : MCP》2008,7(9):1714-1724
The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I. 相似文献
15.
16.
Cell-free synthesis of cytochrome c. 总被引:5,自引:0,他引:5
17.
18.
Investigations into the nature of the axial heme ligands, the strength of the heme crevice, the reactivity with cyanide, and the ascorbate reducibility of cytochrome c1 were performed to explore structure-function relationships of cytochrome c1. The existence of an absorbance band at 690 nm, which was quenched by raising the pH with a pK of 9.2 corresponding to a low spin-low transition, suggested that a methionine residue probably functioned as one of the axial heme iron ligands in this cytochrome. Spectral titrations of cytochrome c1 in the low pH range showed a markedly elevated pK for the low spin-high spin transition relative to cytochrome c. Denaturation studies with urea, the absence of any reaction with cyanide, and the evidence from other lines would appear to indicate that the heme group of cytochrome c1 was reduced by ascorbate at approximately 5% of the rate of reduction of cytochrome c but this rate dramatically increased with increasing pH concomitant with the disappearance of the 690 nm absorbance band. Circular dichroic spectra substantiated that elevated pH produced conformational changes localized to the heme crevice and probably also the regions containing aromatic residues. The enhanced rate of ascorbate reduction was perhaps a consequence of the increased accessibility of the heme iron to ascorbate. Major unfolding of the protein in 8 M urea, however, completely abolished the ascorbate reducibility of cytochrome c1. The buried nature of the heme group of cytochrome c1 would probably preclude transfer of an electron from cytochrome c1 to cytochrome c through a direct Fe-Fe or a heme-heme interaction. This poses an important question concerning the mechanism of this electron transfer between these two cytochromes not only in mitochondria but also in solution. 相似文献
19.
O Einarsdóttir M G Choc S Weldon W S Caughey 《The Journal of biological chemistry》1988,263(27):13641-13654
The site and mechanism of dioxygen reduction in cytochrome c oxidase from bovine heart muscle have been investigated. The rate of cytochrome c2+ oxidation by O2 is shown to be affected by several factors: 1) pH, with optima at 5.65 and 6.0, 2) temperature between 0 and 29 degrees C, with E alpha = 13 kcal mol-1, 3) D2O exchange, with a reduction in rate of 50% or more at the pH optima, and 4) the addition of ethylene glycol or glycerol, which significantly lowers the rate. The extremely narrow (delta vCO approximately 4 cm-1) infrared stretch bands at approximately 1964 and approximately 1959 cm-1 for liganded CO are only slightly affected by factors 1-4 or by changes in the oxidation state of metals other than the heme alpha 3 iron. These results indicate a stable, unusually immobile O2 reduction site well-isolated from the external medium, a characteristic expected to be important for oxidase function. Precise stereochemical positioning of hydrogen donors adjacent to O2 liganded to heme alpha 3 iron can be expected in order to achieve the optimization of the time/distance relationships required for enzyme catalysis. These findings support a novel mechanism of O2 reduction via a hydroperoxide intermediate within a reaction pocket that experiences little change in conformation during the hydrogen and electron transfer steps. 相似文献
20.
ATP induces conformational changes in mitochondrial cytochrome c oxidase. Effect on the cytochrome c binding site 总被引:2,自引:0,他引:2
ATP influences the kinetics of electron transfer from cytochrome c to mitochondrial oxidase both in the membrane-embedded and detergent-solubilized forms of the enzyme. The most relevant effect is on the so-called "high affinity" binding site for cytochrome c which can be converted to "low affinity" by millimolar concentrations of ATP (Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976) J. Biol. Chem. 251, 1104-1115). This phenomenon is characterized at the molecular level by the following features. ATP triggers a conformational change on the water-exposed surface of cytochrome c oxidase; in this process, carboxyl groups forming the cluster of negative charges responsible for binding cytochrome c change their accessibility to water-soluble protein modifier reagents; as a consequence the electrostatic field that controls the enzyme-substrate interaction is altered and cytochrome c appears to bind differently to oxidase; photolabeling experiments with the enzyme from bovine heart and other eukaryotic sources show that ATP cross-links specifically to the cytoplasmic subunits IV and VIII. Taken together, these data indicate that ATP can, at physiological concentration, bind to cytochrome c oxidase and induce an allosteric conformational change, thus affecting the interaction of the enzyme with cytochrome c. These findings raise the possibility that the oxidase activity may be influenced by the cell environment via cytoplasmic subunit-mediated interactions. 相似文献