首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma membrane modifications have been widely recognized as crucial factors in cell injury and death. One of these modifications, surface blebbing, has been considered as an injury-marker associated with a series of biochemical and physiological modifications. Our study focused on the different effects of free radical-induced cell damage by quinone menadione (2-methyl-1,4-naphthoquinone) and by hyperthermic shock (45°C) on the erythroleukemic cell line K.562. Different techniques including immunofluorescence, freeze-fracturing, and electron paramagnetic resonance spectroscopy were employed. Menadione induced the formation of surface blebs, accompanied by a rearrangement of the microfilament system and changes in the distribution of plasma membrane proteins. In contrast, heat-shocked cells showed neither blebbing nor important cytoskeletal changes. Finally, the electron paramagnetic resonance results showed an increase in membrane order not specifically related to the type of free radical-induced stress. These cell death features appear to suggest the existence of two different types ofpathways for necrotic cell death: both treatments induce cell injury and eventual death by modifiting plasma membrane integrity and function. However, one involves cytoskeleton-dependent surface blebbing, whereas the other does not.Abbreviations EPR electron paramagnetic resonance - HS heat shock - IMPs intramembrane particles - MEN menadione  相似文献   

2.
The exposure of the epidermoid cell line A431 to different concentrations of CsCl was assessed using different methodological approaches. Two different effects were detected depending upon the concentration of the agent: at low concentrations, cell modification was represented mainly by a very pronounced cell flattening and an alteration of the cell-to-cell contacts, interpreted as an increase in cell adhesion. At higher concentrations, a clear pathogenic effect was observed that allowed the formulation of the hypothesis that specific mechanisms of toxicity at the subcellular level involving mitochondrial and cytoskeletal function can exist. In addition, membrane order parameters, as detected by electron paramagnetic resonance (EPR) spectroscopy, displayed a dose-dependent increase in membrane rigidity. Results reported here seem to suggest that cesium ions can enter the cell, modify plasma membrane integrity and alter some specific cytoplasmic components, e.g. the cytoskeleton. Considering that environmental contamination by cesium as a result of radioactive fallout is of major importance and that few data are available thus far on this matter, this study provides evidence for the possible mechanisms of action of the non-radioactive form of this ion in cells.Abbreviations  相似文献   

3.
Adult T cell leukemia-derived factor (ADF) is a human homologue of thioredoxin with many biologic functions including IL-2R induction, growth promotion, thiol-dependent reducing activity, and radical scavenging activity. The regulatory effect of ADF on the cytotoxic activity of TNF was examined by using a human histiocytic lymphoma cell line, U937. When U937 cells were preincubated with recombinant ADF (rADF) (0.1-100 micrograms/ml) at 37 degrees C for 30 min, TNF-dependent cytotoxicity on U937 cells was markedly inhibited. This inhibitory effect was as high as 95% in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (rADF 100 micrograms/ml) and 85% in the 51Cr-releasing assay (rADF 10 micrograms/ml). After pretreatment of U937 cells with IFN-gamma to augment the sensitivity to TNF, an inhibitory effect of rADF was also found. When U937 cells were washed after preincubation with rADF, resistance to TNF-dependent cytotoxicity was still observed, indicating that rADF inhibited the sensitivity of U937 to TNF-dependent cytotoxicity rather than modifying TNF molecules. Scatchard analysis of TNF receptors on U937 cells using 125I-TNF showed that rADF modulated neither the density nor the affinity of the cell membrane significantly. rADF also reduced the cytotoxicity induced by anti-Fas IgM mAb which shows cytotoxicity quite similar to TNF. rADF (10 micrograms/ml) reduced 90% of the cytotoxicity by anti-Fas IgM mAb, without a detectable change either in Fas Ag expression (MFI 58.1 vs 53.3) or in the degradation of anti-Fas IgM mAb as determined by flow cytometric analysis. These findings indicated that the rADF-induced resistance to the cytotoxic effect of TNF and anti-Fas mAb was not related to the modulation of the TNF receptor or Fas Ag.  相似文献   

4.
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.  相似文献   

5.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

6.
Mechanism of cell death induction by nitroxide and hyperthermia   总被引:6,自引:0,他引:6  
Heat stress and nitroxides induce reactive oxygen species (ROS) and proapoptotic effects. The underlying mechanisms remain largely elusive. Here we report that Tempo (2,2,6,6-tetramethylpiperidine-N-oxyl) is a potent thermosensitizer for promoting cell death in human leukemia U937 cells. Treatment with Tempo (10 mM, 37 degrees C/30 min) and hyperthermia (44 degrees C/30 min) induced 30 and 70-80% apoptosis, respectively, through Bax-mediated cytochrome c release and DEVDase activation. The Tempo/heat combination also caused Bax-mediated cytochrome c release, but switched heat-induced apoptosis to the particular pyknotic cell death, resulting in the irreparable inhibition of proliferation. Tempo and heat stress, but not the combination, caused an early transient elevation of H2O2/O2*- and a late induction of only O2*-, respectively. Mitochondrial Ca2+ overloads were indistinguishable after any treatment. Heat stress induced the pan-caspase inhibitor zVAD-fmk-suppressible low-Deltapsi (mitochondrial membrane potential) in 75% of cells as a result of DEVDase activation. In contrast, Tempo yielded low-Deltapsi by deprivation of the mitochondrial H+ gradient. The combined treatment induced 97% zVAD-resistant low-Deltapsi cells through irreversible mitochondrial dysfunction. Together, thus, Tempo or heat stress induced Bax-mediated mitochondrial apoptosis with the possible help of ROS or mitochondrial Ca2+, and Tempo when combined with hyperthermia acts a sensitizer by inducing irreparable pyknotic cell death through irreversible mitochondrial dysfunction.  相似文献   

7.
Intermittent reports of cytoskeleton proteins (actin and tubulin) on the cell surface have appeared over the last 13 years. Whereas most have concentrated on lymphocytes, this study provides evidence for the presence of these proteins on the surface of a human cultured monocyte-like cell line, U937. Both actin and tubulin were detected on the surface of U937 cells by flow cytometry, using an indirect staining procedure based on biotin-streptavidin-phycoerythrin, chosen for greater sensitivity. By use of this procedure, the majority of viable unstimulated U937 cells stained positively for actin and tubulin, although the level of fluorescence intensity was low. With an antibody specific for tyrosine-tubulin, most of the surface tubulin was also found to be tyrosinylated. For vimentin, an intermediate filament protein abundantly present in the cytoplasm of U937 cells, no staining could be detected. Confirmation of the flow cytometry data for surface actin and tubulin on unstimulated U937 cells was achieved by direct vesualization using a confocal laser scanning microscope. When U937 cells were activated with PMA and LPS, a marked reduction in the level of cell surface actin and tubulin occurred. The role of cell surface actin and tubulin on unstimulated U937 cells, in terms of monocyte function, remains to be elucidated.  相似文献   

8.
Shigella flexneri, but not a non-invasive mutant derivative rapidly induced cell death in human monoblastic U937 cells as well as in differentiated cells pretreated with interferon-gamma (IFN gamma) or retinoic acid (RA). We investigated the morphological and biochemical characteristics of bacterial invasion-induced cell death in these differentiated U937 cells. IFN gamma-differentiated cells showed morphological changes typical of apoptosis and their DNA was cleaved giving a ladder-like electrophoretic pattern after infection by Shigellae. In contrast, swelling of the cytoplasm and blebbing of the plasma membrane were observed in RA-differentiated and undifferentiated cells invaded by the bacteria. No condensation of nuclei was observed in these cells by light microscopy, and no internucleosomal fragmentation of DNA was detected on agarose gels, which resembled the features of oncosis. Furthermore, cleavage of poly(ADP-ribose) polymerase, a substrate for apoptotic caspases, was seen only in IFN gamma-pretreated cells but not in RA-pretreated or undifferentiated cells. These findings suggested that virulent Shigella flexneri induces distinct types of cell death in U937 cells depending on their differentiation state.  相似文献   

9.
The impact of ectopic expression of an N-terminal phosphorylation loop deletant Bcl-2 protein (Bcl-2Delta32-80) on the response of U937 monoblastic leukemia cells to paclitaxel was examined. In contrast to recent findings in HL-60 cells (Fang et al., Cancer Res. 58, 3202, 1998), U937 cells overexpressing Bcl-2Delta32-80 were significantly more resistant than those overexpressing full-length protein to caspase-3 and -9 activation, PARP degradation, and apoptosis induced by paclitaxel (500 nM; 18 h). Bcl-2Delta32-80 was also more effective than its full-length counterpart in opposing paclitaxel-mediated mitochondrial dysfunction, e.g., loss of mitochondrial membrane potential (Deltapsim) and cytochrome c release into the cytoplasm. Enhanced resistance of U937/Bcl-2Delta32-80 cells to paclitaxel was observed primarily in the G2M population. Together, these findings demonstrate that deletion of the Bcl-2 phosphorylation loop domain increases resistance of U937 leukemia cells to paclitaxel-mediated mitochondrial damage and apoptosis and suggest that factors other than, or in addition to, phosphorylation contribute to Bcl-2-related cytoprotectivity against paclitaxel in this model system.  相似文献   

10.
Yang ES  Park JW 《Biochimie》2006,88(7):869-878
Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative damage. The protective role of antioxidant enzymes against NO-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP(+)-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM S-nitroso-N-acetylpenicillamine (SNAP), the nitric oxide donor, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in inhibitor-treated U937 cells upon exposure to NO. Upon exposure to 0.2 mM SNAP, which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated U937 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against NO-induced cell death including necrosis and apoptosis.  相似文献   

11.
Cantoni O  Guidarelli A 《IUBMB life》2008,60(11):753-756
Eight years ago, we published in this journal the first evidence that peroxynitrite does not directly produce DNA single-strand breakage in intact U937 cells (Guidarelli et al., IUBMB Life, 50, 195-201). This event was rather attributed to the secondary reactive species produced at the mitochondrial level via a Ca2+-dependent reaction, in which ubisemiquinone serves as an electron donor. Under these conditions, electrons are directly transferred to molecular oxygen and superoxide/H2O2, and the ensuing DNA damage can therefore be produced in a time- dependent manner for at least 30 min. Formation of H2O2 and DNA single-strand breaks was therefore dependent on interference with electron transport at the complex III level as well as on mitochondrial Ca2+ accumulation. Further studies led to the demonstrations that peroxynitrite mobilizes Ca2+ from the ryanodine receptor. Finally, in U937 cells, a pro-monocytic cell line sharing with monocytes/macrophages the same signaling events to survive to peroxynitrite, mitochondrial H2O2 promotes inhibition of survival via tyrosine phosphatase activation, leading to ERK1/2 dephosphorylation and thus to upstream inhibition of the survival signaling.  相似文献   

12.
The application of a heat shock on the human microglial cell line (CHME 5) has been shown to cause cytoskeleton modifications and alterations in phosphorylated metabolite content (Macouillard-Poulletier de Gannes et al., 1998a Metabolic and cellular characterization of immortalized human microglial cells under heat stress. Neurochem. Int. 33, 61-73). In this study, we focused on the possible involvement of mitochondria in this heat stress response. The cell respiratory properties were followed during the recovering period and the possible relationships between mitochondria and the cytoskeleton were studied. We observed that the heat shock induced changes in mitochondrial activity due to protein denaturation, rather than mitochondrial loss. Furthermore, these alterations were correlated with cytoskeleton disorganization since vimentine, tubuline and mitochondria shift, simultaneously, to a perinuclear location. The perturbations of the mitochondrial distribution persisted until cytoskeleton networks had recovered. Nevertheless, the respiratory properties recovered rapidly suggesting a renaturation of mitochondrial proteins in connection with mitochondrial cytoplasmic redistribution.  相似文献   

13.
Cell death induced by oxidative insult targeted to mitochondrial interior of A431 cells was investigated. For stimulated production of ROS in the inner space of mitochondria, safranin-mediated photodynamic treatment (PDT) was employed. Another photosensitizer, mTHPC, which diffusely localizes to cellular membranes, was used for comparison. Cell response to the oxidative insult in mitochondrial interior was different from the response to the photodamage produced in cellular membranes. Autophagy and apoptotic features of cell death in response to mTHPC-PDT was observed in a wide range of PDT doses. Cell response to the oxidative stress in mitochondrial interior was dose-dependent. Damage up to CD50 did not reveal hallmarks of dead cells. At intermediate damage (CD50), cells manifested enhanced autophagy and reduced population of S-phase, but not apoptosis. Severe damage (beyond CD70) induced apoptosis following release of cytochrome c and caspase activation, in addition to autophagy and cell cycle arrest.  相似文献   

14.
The general protein kinase inhibitor staurosporine (STS) has dual effects on human epidermoid cancer cells (A431) and normal rat kidney fibroblasts (NRK). It almost immediately stimulated increased lamellipodial activity of both cell lines and after 2 h induced typical signs of apoptosis, including cytoplasmic condensation, nuclear fragmentation, caspase-3 activation and DNA degradation. In the early phase we observed disruption of actin-containing stress fibres and accumulation of monomeric actin in the perinuclear region and cell nucleus. Increased lamellipodial-like extensions were observed particularly in A431 cells as demonstrated by co-localisation of actin and Arp2/3 complex, whereas NRK cells shrunk and exhibited numerous thin long extensions. These extensions exhibited uncoordinated centrifugal motile activity that appeared to tear the cells apart. Both cofilin and ADF were translocated from perinuclear regions to the cell cortex and, as expected in the presence of a kinase inhibitor, all the cofilin was dephosphorylated. Myosin II was absent from the extensions, and a reduction of phosphorylated myosin light chains was observed within the cytoplasm indicating myosin inactivation. Microtubules and intermediate filaments retained their characteristic filamentous organisation after STS exposure even when the cells became rounded and disorganised. Simultaneous treatment of NRK cells with STS and the caspase inhibitor zVAD did not inhibit the morphological and cytoskeletal changes. However, the cells underwent cell death as verified by positive annexin-V-staining. Thus it seems likely that cell death induced by STS may not only be a consequence of the activation of caspase, instead the disruption of the many motile processes involving the actin cytoskeleton may by itself suffice to induce caspase-independent cell death.  相似文献   

15.
MK 886, an arachidonic acid-related analog which inhibits the enzyme, 5-lipoxygenase by an indirect mechanism involving the 5-lipoxygenase activating protein, rapidly increased U937 cytosol Ca(2+), much of which localized around the cell nuclei. Five-lipoxygenase activity was not directly involved since the direct redox-dependent 5-LPOx inhibitor, SC-41661A did not increase Ca(2+). U937 cells subsequently undergo classic type 1 programmed cell death. At least initially the ionized calcium originates from internal stores. Coincident with the rise in U937 ionized calcium, MK 886 rapidly increased reactive oxygen species and reduced mitochondrial membrane potential, as judged by several fluorescent probes. The Ca(2+) response of myeloid leukemia-derived HL-60 cells to MK 886 was similar and both cell lines express Bcl-2 protein. Bcl-2-negative Panc-1 and PC-3 cells did not respond to MK 886 with a Ca(2+) signal but did develop oxidative stress and a decline in mitochondrial membrane potential; these events are thought to contribute to the inhibition of cell proliferation and induction of a type 2 PCD. In addition to its marked inhibition of Bcl-2 mRNA synthesis, an interesting hypothesis is that MK 886, serving as a low molecular weight ligand, either by direct or indirect inhibition of U937 Bcl-2 protein function, possibly related to an ion channel activity, alters the distribution of intracellular, possibly nuclear Ca(2+), thereby promoting the development of type 1 programmed cell death.  相似文献   

16.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. One oxidative pathway of LDL involves myeloperoxidase, which catalyzes the production of hypochlorous acid (HOCl) in monocytes. We investigated the apoptotic mechanism induced by oxLDL, generated by HOCl treatment of native LDL, in human monocytic U937 cell line. The involvement of the mitochondrial apoptotic pathway was analyzed in Bcl-2-overexpressing clones, generated from U937 cells. HOCl-oxLDL induced in U937 cells (i) a marked caspase-dependent increase of apoptosis, (ii) a loss of mitochondrial membrane potential, (iii) a specific activation of caspase-2, -3, -8, and -9, and (iv) a similar degree of apoptosis in presence or absence of anti-Fas and anti-TNF-R1 antibodies. Moreover, the degree of HOCl-oxLDL-induced caspase-3 and -8 activation, and apoptosis was significantly reduced in U937/Bcl-2 cells, with no activation of caspase-9. By contrast, Cu-oxLDL-mediated apoptosis in U937 cells involved exclusively the mitochondrial pathway. In conclusion, the mechanism of HOCl-oxLDL-induced apoptosis in monocytic U937 cells involves the two pathways of apical caspase activation: (i) death receptor-mediated caspase-8 and (ii) mitochondria-mediated caspase-9. This converges in the activation of executing caspases, including caspase-3, and apoptosis. The interference of Bcl-2 overexpression with HOCl-oxLDL-induced apoptosis suggests the importance of mitochondrial involvement in this apoptotic mechanism.  相似文献   

17.
Identification, exploration and scientific validation of antioxidant rich herbal extracts to mitigate the radical induced cell damage provide new insights in the field of ayurvedic research/therapies. In the present study, we evaluated the anti-oxidant and anti-apoptotic potential of Celastrus paniculatus seed extract (CPSE) against tertiary butyl hydroperoxide (t-BHP) induced mice muscle cell damage. The extract at a dose of 50 µg/ml protected the cells up to 70 % as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell survival assay and also prevented LDH leakage against t-BHP induced cytotoxicity. CPSE showed potential antioxidant activity by restoring mitochondrial membrane potential and inhibited reactive oxygen species generation and lipid peroxidation. CPSE pretreatment also regulated the antioxidant markers such as superoxide dismutase and catalase enzymes content and proteins expression. Further CPSE showed anti-apoptotic effects by regulating cytochrome-C and heat shock protein-70 expression and also showed 43 % muscle cell DNA damage inhibitory activity against t-BHP challenge as observed by single cell gel electrophoresis assay. Overall the extract inhibits the muscle cell damage, thus explaining the possible anti-oxidant/anti-apoptotic defense status of the C. paniculatus seed extract.  相似文献   

18.
Oxysterols, particularly those oxidised at position 7, are toxic to cells in culture and have been shown to induce apoptosis in cell types such as vascular endothelial cells, smooth muscle cells and monocytes. The precise mechanism by which oxysterols induce apoptosis is unknown but may involve the generation of oxidative stress. In the present study we examined the ability of alpha-TOC, alpha-TOC acetate (alpha-TOCA) and gamma-TOC to protect against 7 beta-hydroxycholesterol (7 beta-OHC)-induced apoptosis of human monocytic U937 cells. 7 beta-OHC is one of the most commonly detected oxysterols in foods and its level in plasma has been positively associated with an increased risk of atherosclerosis. The present study demonstrates a significant decrease in cell membrane integrity and cellular glutathione levels when U937 cells were treated with 30 microM 7 beta-OHC. DNA fragmentation also occurred, as measured by agarose gel electrophoresis, and the number of apoptotic cells increased as assessed by nuclear morphology. Analysis by HPLC showed that there was a greater incorporation of gamma-TOC into U937 cells after a 48 h incubation, than either alpha-TOC or alpha-TOCA. However, despite the increased uptake of gamma-TOC, only alpha-TOC, and not gamma-TOC or alpha-TOCA was effective at inhibiting 7 beta-OHC-induced apoptosis in U937 cells.  相似文献   

19.
It has been hypothesized that reactive oxygen intermediates (ROI) can activate human immunodeficiency virus (HIV) replication and that HIV can trigger programmed cell death (PCD). In this work, we studied PCD in U937 cultured cells chronically infected with HIV and exposed to tumor necrosis factor alpha (TNFα). This cytokine has been shown to induce apoptosis in some cell types and to produce intracellular free radical species including ROI. In addition, it was also demonstrated that HIV-induced PCD observable in U937 infected cells can be favored by TNF exposure. In one of our recent works, evidence was presented that the thiol supplier N-acetylcysteine (NAC) can ‘protect’, at least partially, HIV-infected cells from PCD and determine a significant decrease in viral progeny. In the present work, we demonstrate (a) that apoptosis can be easily induced by TNF only in infected U937 cells and not in control wild-type cells, (b) that daily treatment of TNF-exposed cells with low concentrations of NAC is able to impair viral progeny formation as early as 24 h, (c) that the mitochondrial damage induced by TNF is counteracted by preexposure to NAC, and (d) that NAC alone exerts changes in mitochondria which may be responsible for the protective effects exerted by this compound. Because of the radical producing capacity of TNF, these results seem to indicate that the protective effects of NAC may be due to the specific antioxidant nature of this substance which appears to be capable of impairing both the apoptotic machinery and viral replication by an intracellular mechanism involving mitochondrial integrity and function.  相似文献   

20.
Cultured cells depend on cytokine mediators for sustained growth and maintenance and are routinely employed in bioassays to detect and measure minute changes in biological mediators, e.g. the interferons and interleukins. We evaluated the effects of mycoplasma infection on the steady-state mRNA levels of two cytokines IL-1 alpha and beta. Noninfected human squamous carcinoma cell line A431 expressed constitutively IL-1 alpha and beta mRNA. In contrast freshly isolated peripheral blood mononuclear cells and the monocytic cell line U937 expressed abundant IL-1 mRNA only after the appropriate stimulation. Peripheral blood mononuclear cells and U937 steady-state IL-1 beta mRNA levels were considerably greater than IL-1 alpha mRNA levels, whereas nearly equivalent high levels of IL-1 alpha and beta mRNA were detected in A431 cells. Mycoplasma infection of cultured A431 cells reduced the steady-state levels of IL-1 alpha and beta mRNA. This effect was nonspecific for A431 cells as actin mRNA steady-state levels showed similar decreases to mycoplasma contamination. However, this response was cell specific since mycoplasma-free and contaminated U937 cells differed little in IL-1 mRNA expression. These results show that the response to mycoplasma infection is at least partly cell-type dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号