首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
The eyes of zebra finches are placed laterally, the foveae are looking into different directions. It is unlikely that the birds are able to process different images from both eyes simultaneously. A neural mechanism might therefore be necessary to guide the birds' attention to one of the two eyes and to reduce the processing of information of the other. Previous studies revealed that information from the ipsilateral eye is indeed suppressed on its way to the telencephalon by the activity of the contralateral eye. It has been suggested that two nuclei of the tecto-thalamic tract, nucleus subpraetectalis and nucleus interstitio praetecto subpraetectalis, are a central part of such a suppressive mechanism. Using electrophysiological recordings, we investigated the influence of these two nuclei and nucleus rotundus on the processing of binocular visual information by treating the nuclei with picrotoxin or electrolytic lesions. Deactivation of inhibitory neurons within SP/IPS leads to a significant increase of the ectostriatal responses to ipsilateral and bilateral stimulation, the responses to contralateral stimulation remain unaffected. Lesioning SP/IPS does not alter the responses to visual stimuli. Treatment of nucleus rotundus with picrotoxin increases contralaterally and bilaterally, but not ipsilaterally evoked responses. A wiring diagram is presented which interprets these findings.  相似文献   

2.
3.
Eye movements modulate visual receptive fields of V4 neurons   总被引:11,自引:0,他引:11  
The receptive field, defined as the spatiotemporal selectivity of neurons to sensory stimuli, is central to our understanding of the neuronal mechanisms of perception. However, despite the fact that eye movements are critical during normal vision, the influence of eye movements on the structure of receptive fields has never been characterized. Here, we map the receptive fields of macaque area V4 neurons during saccadic eye movements and find that receptive fields are remarkably dynamic. Specifically, before the initiation of a saccadic eye movement, receptive fields shrink and shift towards the saccade target. These spatiotemporal dynamics may enhance information processing of relevant stimuli during the scanning of a visual scene, thereby assisting the selection of saccade targets and accelerating the analysis of the visual scene during free viewing.  相似文献   

4.
Inhibitory components in the response evoked by presentation of mobile visual stimuli in neurons belonging to the lateral suprasylvian area of the cerebral cortex were investigated in cats. It was demonstrated by comparing poststimulus histograms of neuronal response to movement in two opposite directions that the location of discharge centers within the receptive fields changed in relation to movement direction. No spatial area giving rise to the inhibitory component of response could be found in any of the neurons with monotone stationary structure of their receptive fields. Findings from experiments involving techniques of stimulating a test area of the receptive field separately indicated that inhibitory components of response in neurons of the lateral suprasylvian area with monotone organization of the receptive field could represent inhibitory after-response following the neuronal excitation produced by the visual stimulus traveling across this field.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 299–308, May–June, 1987.  相似文献   

5.
The substructural organization of receptive fields of lateral suprasylvian cortical neurons, sensitive to movement of visual stimuli, was investigated in cats. The experimental results showed that receptive fields of neurons in this cortical area, judging by responses to movement, consist mainly of cells with qualitatively different characteristics. With the unmasked method of presentation of a moving stimulus, a reduction in the amplitude of movement as a rule evoked a directional response of the cell, whereas with the masked method, and with the same amplitudes of movement, a nondirectional response appeared. The receptive fields of some neurons were particularly sensitive to movement of borders but did not respond to the body of the stimulus like receptive fields of neurons described in other visual structures. Heterogeneity of the substructural organization of receptive fields of lateral suprasylvian cortical neurons can be explained by convergence of inputs on the neuron and it is regarded as the basis of integrative mechanisms in this structure.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 293–300, May–June, 1985.  相似文献   

6.
The response of caudate nucleus neurons to presentation of photic stimuli located at varying distances from the fovea centralis was investigated in awake cats. Stimulation of different sites on the visual field below the fovea produced dissimilar reactions in 25 of the 35 (or 71%) of these neurons responding to photic stimulation. This divergence of response indicates that in 6 of these cells (or 17%) the receptive fields in the test area of the visual field bordered on the central area of the latter and 6 neurons (17%) showed reduced sensitivity to the effects of stimuli nearer to the periphery than to the center of the visual field, while 13 units (37%) were receiving qualitatively different information from various sites on the field of vision. On the basis of our findings we deduced that caudate nucleus neurons are involved in the analysis of visual sensory signals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 241–250, March–April, 1986.  相似文献   

7.
We studied the responses of neurons of the extrastriate cortical area 21b of the cat to changes in orientation of the movements of visual stimuli within the receptive field (RF) of the neuron under study. Our experiments demonstrated that 24 of 108 cells (22%) responded differentially to a certain extent to orientation of the movements of visual stimuli. As a whole, neurons of the area 21b did not demonstrate fine tuning on the optimum angle of orientation. In many cases, neuronal responses to different orientations of the movement of visual stimulus depended significantly on specific parameters of this stimulus (its shape, dimensions, and contrast). Some directionally sensitive neurons responded to a change in orientation of the movement of visual stimuli by modification of the index of directionality. We also studied spatial organization of the RF of neurons with the presentation of stationary visual stimuli. Comparison of the neuronal responses to a change in orientation of the movements of stimuli and to presentation of stationary stimuli showed that the correlation between the orientation sensitivity of the neuron under study and the stationary functional organization of its RF was insignificant. We hypothesize that inhibitory processes and subthreshold influences from a space surrounding the RF play a special role in the formation of the neuronal responses generated in the associative visual cortical regions to visual stimulation.  相似文献   

8.
Responses of 46 neurons of the CA1 field, of the dorsal hippocampus to visual stimuli were investigated during acute experiments on awake cats following pretrigeminal brainstem action. The receptive field was small in size in 71% of hippocampal neurons. The cells responded both tonically (34%) and phasically (66%) to the presentation of immobile stimuli. All the test cells of the CA1 field of the dorsal hippocampus responded to moving visual stimuli and 27% of these neurons were directionally tuned. A group of 7% of the neurons displayed particular sensitivity to the movement of a dark spot across the receptive field; these cells frequently reacted more to a moving dark spot than to a bar. Findings indicate the presence of highly specific sensory neurons within the hippocampus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 779–786, November–December, 1985.  相似文献   

9.
The accessory optic system and pretectum are highly conserved brainstem visual pathways that process the visual consequences of self-motion (i.e. optic flow) and generate the optokinetic response. Neurons in these nuclei have very large receptive fields in the contalateral eye, and exhibit direction-selectivity to large-field moving stimuli. Previous research on visual motion pathways in the geniculostriate system has employed "plaids" composed of two non-parallel sine-wave gratings to investigate the visual system's ability to detect the global direction of pattern motion as opposed to the direction of motion of the components within the plaids. In this study, using standard extracellular techniques, we recorded the responses of 47 neurons in the nucleus of the basal optic root of the accessory optic system and 49 cells in the pretectal nucleus lentiformis mesencephali of pigeons to large-field gratings and plaids. We found that most neurons were classified as pattern-selective (41-49%) whereas fewer were classified as component-selective (8-17%). There were no striking differences between nucleus of the basal optic root and lentiformis mesencephali neurons in this regard. These data indicate that most of the input to the optokinetic system is orientation-insensitive but a small proportion is orientation-selective. The implications for the connectivity of the motion processing system are discussed.  相似文献   

10.
Neurons in posterior parietal cortex of the awake, trained monkey respond to passive visual and/or somatosensory stimuli. In general, the receptive fields of these cells are large and nonspecific. When these neurons are studied during visually guided hand movements and eye movements, most of their activity can be accounted for by passive sensory stimulation. However, for some visual cells, the response to a stimulus is enhanced when it is to be the target for a saccadic eye movement. This enhancement is selective for eye movements into the visual receptive field since it does not occur with eye movements to other parts of the visual field. Cells that discharge in association with a visual fixation task have foveal receptive fields and respond to the spots of light used as fixation targets. Cells discharging selectively in association with different directions of tracking eye movements have directionally selective responses to moving visual stimuli. Every cell in our sample discharging in association with movement could be driven by passive sensory stimuli. We conclude that the activity of neurons in posterior parietal cortex is dependent on and indicative of external stimuli but not predictive of movement.  相似文献   

11.
We propose a model for the neuronal implementation of selective visual attention based on temporal correlation among groups of neurons. Neurons in primary visual cortex respond to visual stimuli with a Poisson distributed spike train with an appropriate, stimulus-dependent mean firing rate. The spike trains of neurons whose receptive fields donot overlap with the focus of attention are distributed according to homogeneous (time-independent) Poisson process with no correlation between action potentials of different neurons. In contrast, spike trains of neurons with receptive fields within the focus of attention are distributed according to non-homogeneous (time-dependent) Poisson processes. Since the short-term average spike rates of all neurons with receptive fields in the focus of attention covary, correlations between these spike trains are introduced which are detected by inhibitory interneurons in V4. These cells, modeled as modified integrate-and-fire neurons, function as coincidence detectors and suppress the response of V4 cells associated with non-attended visual stimuli. The model reproduces quantitatively experimental data obtained in cortical area V4 of monkey by Moran and Desimone (1985).  相似文献   

12.
On cats with pretrigeminal brainstem transection, we studied the properties of visually sensitive neurons of the extrastriate associative cortical area 21b. The dimensions and spatial distribution of the receptive fields (RF) of the neurons within the vision field were determined. It was found that large-sized RF prevailed within the area 21b (10 to 200 deg2, 61%; greater than 200 deg2, 22%), whereas small-sized RF (1 to 10 deg2) constituted 17% of all the studied RF. Stationary visual stimuli evoked onoff, off, and on responses in 43, 30, and 27% neurons of the area 21b, respectively. In the cases where moving stimuli were presented, 35% of the neurons demonstrated directional sensitivity; the rest of the neurons (65%) were directionally insensitive. We also found a group of neurons that were capable of differentiating not only the direction of the stimulus movement along the RF but also the dimension, shape, and orientation of a complicated moving stimulus. Taking into account the data obtained, we discuss the functional role of the neurons, which demonstrated a specific (specialized with respect to a set of the parameters of visual stimulus, and not to a single parameter) response in central processing of the sensory information.  相似文献   

13.
Responses of caudate neurons to electrical stimulation of the afferent input from thepulvinar thalamic nucleus and to visual stimuli of various orientations were studied extracellularly in awake chronic cats. Activation responses dominated among reactions of these neurons. The response latencies have ranged from 4 to 85 msec for units with primary activation and from 20 to 150 msec for inhibited ones. The values are indicative of both rapidly and slowly conducting afferent pathways. A possibility of monosynaptic transmission in thepulvinarcaudate projections is also revealed.Pulvinar stimulation is found to be efficient for a significant (more than 50 percent) number of caudate neurons responding to visual stimuli, including orientation-selective cells. The mode of influences from other structures of the visual system (optic tract, area 17, the Clare-Bishop area) on caudate neurons responding topulvinar stimulation is described. The data are discussed with respect to the possible role of cortical and subcortical projections of the visual system in the creation of sensory specific responses of the caudate nucleus.A. A. Bogomolets Physiology Institute, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 520–529, September–October, 1991.  相似文献   

14.
Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior.  相似文献   

15.
Depending on the organization of their receptive fields and character of their responses to shaped visual stimuli the following main groups of visual cortical neurons were distinguished in the squirrelSciurus vulgaris: nonselective for direction of movement and orientation of stimuli (14%); selective for direction of movement (30%) and selective for line orientation (49%); 7% of neurons were not classified. Cells selective for direction of movement and some nonselective cells exhibited specific sensitivity to high speeds of stimulus movement (optimal velocities of the order of hundreds of degrees per second). Neurons selective for line orientation differed in the degree of overlapping of their on- and off-zones; they could include analogs of simple and complex neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 125–231, March–April, 1981.  相似文献   

16.
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.  相似文献   

17.
We studied changes in the spatial parameters of receptive fields (RFs) of visually sensitive neurons in the associative area 21a of the cat cortex under conditions of presentation of moving visual stimuli. The results of experiments demonstrated that these parameters are dynamic and depend, from many aspects, on the pattern of the stimulus used for their estimation. Angular lengths of the horizontal and vertical axes of the RFs measured in the case of movement of the visual stimuli exceeded many times those determined by presentation of stationary blinking stimuli. As is supposed, a visual stimulus, when moving along the field of vision, activates a certain number of the neurons synaptically connected with the examined cell and possessing RFs localized along the movement trajectory. As a result, such integrated activity of the neuronal group can change the excitation threshold and discharge frequency of the studied neuron. It seems probable that correlated directed activation of the neuronal groups represents a significant neurophysiological mechanism providing dynamic modifications of the RF parameters of visually sensitive neurons in the course of processes of visual perception and identification of moving objects within the field of vision.  相似文献   

18.
Changes in activity of 83 neurons in the rabbit colliculus superior evoked by the replacement of eight color and eight achromatic stimuli in pairs were analyzed. It was found out that neurons displayed the early and late phasic responses (within 50-90 and 120-300 ms respectively, after the replacement) and long-term tonic response component, which depended on stimuli intensity. Analysis of phasic component revealed three neuronal groups. The first group (n=25, 30%) selected on the basis of the earliest component, was specialized to differentiate stimuli only by intensities. The perceptual spaces of these neurons reconstructed on the basis of spike discharge in the earliest response were two-dimensional. The second group of neurons (n=16, 19%) selected on the basis of the late phasic component demonstrated four-dimensional structure of perceptual space. Neurons of the third group (n=4, 5%) possessed a two-dimensional structure of perceptual space reconstructed by the analysis of the early component, whereas analysis of the late response revealed a four-dimensional structure. We suggest that information about differences between stimuli in color and intensity coming from cortical neurons is necessary for the reconstruction of four-dimensional space. The structure of perceptual spaces reconstructed on the basis of phasic responses of neurons in the colliculus superior was similar to the spaces of neurons in the primary visual cortex and lateral geniculate nucleus. The structure of perceptual space reconstructed on the basis of neuronal spikes was also similar to the space calculated from the N85 component of the visual evoked potential recorded under similar conditions. This finding confirms the general principle of vector coding in the visual system.  相似文献   

19.
Spatio-temporal interactions within complex receptive fields in the cat visual cortex were investigated by sequential presentation of two stationary stimuli. When two stimuli were presented in phase (on-on or off-off) in the order corresponding to preferred direction of movement, facilitation or weak inhibition of the response to the second stimulus was observed, whereas if it corresponded to zero direction of movement, the response was strongly inhibited. In the case of stimulation out of phase (on-off or off-on), in the order corresponding to the preferred direction of movement, considerable inhibition of the response to the second stimulus was observed, whereas in the opposite order, facilitation or weak inhibition was observed. The strength of interaction between different parts of the field depended on the distance between them and the duration of the interval between stimuli. Directional selectivity of "complex" neurons is thus ensured by asymmetry of spatio-temporal interactions between receptive field inputs of the same type. Interactions between inputs of different types, arising when a multiedge stimulus (bar, grating) can be used by the visual system to distinguish an object from the background and to assess changes in size of objects and the relative velocity of their movement.V. Kapsukas State University, Vilnius. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 505–512, July–August, 1984.  相似文献   

20.
The distribution of 70 visually sensitive neurons in the cat pulvinar sensitive to motion in the receptive fields was studied. The experimental results showed that components with directional characteristics are present in the structure of these fields of both direction-selective and unselective neurons. In the receptive fields of direction-selective neurons the directional elements of the substructure have identical preferred directions, which coincide with the preferred directions of response to stimulus movement over the entire receptive field. The organization of receptive fields of direction-selective neurons of the visual association structure thus does not differ significantly from that of analogous fields of visual projection neurons. Directional elements of the receptive fields of direction-unselective neurons were found to have different preferred directions, thereby providing a basis for organization of the nondirectional response of the neuron to a stimulus moving across the entire receptive field.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 339–346, July–August, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号