首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellar apparatus and presumptive vestigial feeding apparatuses of a cold-water, photosynthetic, quadriflagellate euglenoid is described. The organism possesses two similar sets of flagella each consisting of one short and one long flagellum. Each pair of flagella is associated with three microtubular roots for a total of six roots in the basal apparatus. At the level of the ventral basal bodies, each intermediate root is nine-membered, while the ventral roots are composed of eight to nine microtubules. Only one of the ventral roots lines the single microtubule reinforced pocket. A four-membered dorsal root attaches to each dorsal basal body, and at the level of the reservoir each gives rise to a dorsal band. An additional bundle of microtubules, not arising from the microtubular roots of the basal apparatus, begins posterior to the basal apparatus as a small group of a few microtubules and extends anteriorly on the right ventral side of the reservoir ending at the canal. At the level of the stigma, the microtubules are organized into a multi-layered bundle that continues to increase in size and eventually splits to form two bundles at the level of the canal. We postulate that these bundles may represent the remnants of a rod-and-vane-type feeding apparatus like that found in many phagotrophic euglenoids.  相似文献   

2.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

3.
The flagellar apparatus of Chrysolepidomonas dedrolepidota Peters et Andersen is similar to that of other members of the Ochromonadales, Chrysophyceae. there are four microtubular roots (R1-4) and a system II fiber (= rhizoplast). the R1 root consists of three microtubules that nucleate many cytoplasmic microtubules. One compressed band of 10 or more cytoplasmic microtubules is directed black along the R1 root in an anti-parallel direction. The R2 root consists of one to two microtubules, and it extends toward the distal end of the R1 root. The R3 root consists of six (?seven) microtubules near its proximal end. The “a” and “f” microtubules of the R3 root are under the short flagellum, and the “f” microtubule loops back and under the basal body, extending down to the nucleus. The R4 root consists of one to two microtubules extending along the left side of the shot flagellum and curving under the short flagellum where it terminates near the “a” microtubule of R3 Both flagella have a transitional plate and a transitional helix with five gyres. There is a thin, second plate in the basal body at the level of the distal end of the “c” tubules of the basal body triplets. The tripartite flagellar hairs have long lateral filaments but lack short lateral filaments. We compare the flagellar apparatus with that of other members of the Ochromonadales and members of the Hydrurales and Hibberdiales.  相似文献   

4.
The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.  相似文献   

5.
Plant microtubule studies: past and present   总被引:1,自引:0,他引:1  
Here, I briefly review historical and morphological aspects of plant microtubule studies in land plants. Microtubules are formed from tubulins, and the polymeric configurations appear as singlet, doublet, and triplet microtubules. Doublet microtubules occur in the axoneme of cilia and flagella, and triplet microtubules occur in the basal bodies and centrosomes. Doublet and triplet microtubules are lost in all angiosperms and some gymnosperms that do not possess flagellated sperm. In land plants with flagellated sperm, centriolar centrosomes transform into basal bodies during spermatogenesis. In flowering plants, however, most male gametes (sperm) are conveyed to eggs without the benefit of cilia or flagella; thus, higher plants lack centriolar centrosome and doublet and triplet microtubules. The loss of centriolar centrosomes from the life cycle of flowering plants may have influenced the evolution of the plant microtubule system. Comparison of mitotic apparatuses in basal land plants and flowering plants illuminates the evolutionary transition from the centriolar microtubule system to the acentriolar microtubule system.  相似文献   

6.
Electron microscopy reveals that nonmotility in the spermatozoids of mutant 230X of the fern Ceratopteris thalictroides results from highly aberrant flagella. With respect to its mitochondrial complement, amyloplasts, condensed chromatin within the nucleus and the multilayered structure (MLS), the mutation is almost indistinguishable from the wild-type spermatozoids. In contrast to flagellar mutations in other organisms (man, mouse, Drosophila, Chlamydomonas), which principally affect the microtubules of the axoneme, the basal body cartwheel is lacking in 230X. In its absence, compound microtubules with shared walls are still present, but in highly disorganized arrays. Since the amount of polymerized tubulin in the spermatozoids of 230X is approximately the same as in the wild type, the mutation does not seem to affect microtubule synthesis or assembly. Centriolar cartwheels appear to be essential templates for the alignment of triplet and doublet tubules in regular radial arrays. The MLS in 230X is almost normal, whereas the flagella are aberrant, indicating that there are two distinct functional classes of microtubules in archegoniate spermatozoids. In contrast to the helix of 3½ gyres found in the wild type, nuclear morphology in 230X exhibits profound distortions ranging from deep channels and holes to supernumerary attenuated arms. Parts of nuclei associated with the MLS are almost normal, but malformations are in variably associated with the presence of microtubules of the aberrant flagella that are in close proximity t o the nuclear surface. The shapes of the teratologies are directly related to the number and configuration of the adjacent perinuclear tubules. From these findings, it is argued that microtubules have a crucial role in nuclear shaping in archegoniates; and that the precise form of the nucleus is closely related to the geometry and development of the MLS. On the other hand, it is difficult to envisage how microtubules growing in the chaotic arrays found in 230X could themselves generate shaping forces, More likely, the actual force-generating system, situated in or near the nuclear envelope, has become misaligned and severely restricted by the perinuclear arrays of flagellar tubules, which function as cytoskeletal elements additional to those of the normal MLS. Archegoniate plants are particularly advantageous for the detection of basal body mutants, since centrioles are absent from the mitotic apparatus. Cytological and hybridization studies of 230X affirm the nuclear basis of the mutation, and provide no support for the possible genetic autonomy of centrioles.  相似文献   

7.
Cilia and flagella appear to be stable, terminal, microtubule-containing organelles, but they also elongate and shorten in response to a variety of signals. To understand mechanisms that regulate flagellar dynamics, Chlamydomonas cells with nongrowing flagella were labeled with (35)S, and flagella and basal body components were examined for labeled polypeptides. Maximal incorporation of label into the flagella occurred within 3 h. Twenty percent of the flagellar polypeptides were exchanged. These included tubulins, dyneins, and 80 other axonemal and membrane plus matrix polypeptides. The most stable flagellar structure is the PF-ribbon, which comprises part of the wall of each doublet microtubule and is composed of tubulin and three other polypeptides. Most (35)S was incorporated into the high molecular weight ribbon polypeptide, rib240, and little, if any, (35)S is incorporated into PF-ribbon-associated tubulin. Both wild-type (9 + 2) and 9 + 0 flagella, which lack central microtubules, exhibited nearly identical exchange patterns, so labeling is not due to turnover of relatively labile central microtubules. To determine if flagellar length is balanced by protein exchange, (35)S incorporation into disassembling flagella was examined, as was exchange in flagella in which microtubule assembly was blocked by colchicine. Incorporation of (35)S-labeled polypeptides was found to occur into flagellar axonemes during wavelength-dependent shortening in pf18 and in fla10 cells induced to shorten flagella by incubation at 33 degrees C. Colchicine blocked tubulin addition but did not affect the exchange of the other exchangeable polypeptides; nor did it induce any change in flagellar length. Basal bodies also incorporated newly synthesized proteins. These data reveal that Chlamydomonas flagella are dynamic structures that incorporate new protein both during steady state and as flagella shorten and that protein exchange does not, alone, explain length regulation.  相似文献   

8.
Methods were developed for the isolation of Chlamydomonas flagella and for their fractionation into membrane, mastigoneme, "matrix," and axoneme components. Each component was studied by electron microscopy and acrylamide gel electrophoresis. Purified membranes retained their tripartite ultrastructure and were shown to contain one high molecular weight protein band on electrophoresis in sodium dodecyl sulfate (SDS)-urea gels. Isolated mastigonemes (hairlike structures which extend laterally from the flagellar membrane in situ) were of uniform size and were constructed of ellipsoidal subunits joined end to end. Electrophoretic analysis of mastigonemes indicated that they contained a single glycoprotein of ~ 170,000 daltons The matrix fraction contained a number of proteins (particularly those of the amorphous material surrounding the microtubules), which became solubilized during membrane removal. Isolated axonemes retained the intact "9 + 2" microtubular structure and could be subfractionated by treatment with heat or detergent. Increasing concentrations of detergent solubilized axonemal microtubules in the following order: one of the two central tubules; the remaining central tubule and the outer wall of the B tubule; the remaining portions of the B tubule; the outer wall of the A tubule; the remainder of the A tubule with the exception of a ribbon of three protofilaments. These three protofilaments appeared to be the "partition" between the lumen of the A and B tubule. Electrophoretic analysis of isolated outer doublets of 9 + 2 flagella of wild-type cells and of "9 + 0" flagella of paralyzed mutants indicated that the outer doublets and central tubules were composed of two microtubule proteins (tubulins 1 and 2) Tubulins 1 and 2 were shown to have apparent molecular weights of 56,000 and 53,000 respectively  相似文献   

9.
cmu1-1 is a new mutation of Chlamydomonas reinhardtii that causes a change in cell shape due to an alteration of cytoplasmic microtubule organization. cmu1 mutant cells were first identified based on their altered cell shape. Unlike wild-type cells, which are ellipsoid, cmu1 cells tend to be either round or egg-shaped with the flagella extending from the narrow end of the cell. Electron microscopic comparison of mutant and wild-type cells indicated that microtubule distribution was altered in the mutant cells. Immunofluorescence microscopy using anti-beta-tubulin antibodies revealed that, in wild-type cells, microtubules arise from the anterior end of the cell in the region of the basal bodies, pass posteriorly subjacent to the plasma membrane, and terminate near the posterior end of the cell. In mutant cells, the microtubules also arise from the basal body region but then become disarrayed. They frequently curl back anteriorly or wrap around the equator of the cell; some microtubules also extend completely to the posterior end of the cell, then turn back toward the anterior end. No changes in the basal body region were detected by electron microscopy. Some cmu1 cells had multiple nuclei or an aberrant number of flagella, both of which may be due to defects in cell division, a process dependent upon microtubules. Thus, cmu1-1, which was generated by insertional mutagenesis and is tagged, appears to encode a protein that plays an essential role in the spatial organization of cytoplasmic microtubules involved in both interphase and mitotic functions.  相似文献   

10.
The intracellular structural relationships between the flagella and haptonema in Chrysochromulina acantha Leadbeater & Manton (Prymnesiophyceae) were studied in detail and a reconstruction is presented. Three micro-tubular roots are associated with the flagellar apparatus. The largest, consisting of a sheet of approximately 20 microtubules, has its origins at the base of the left basal body. The main body of microtubules passes over the surface of a mitochondrion toward the left chloroplast and apparently terminates at a pair of microtubules oriented perpendicularly to it. Four microtubules diverge from the sheet and pass behind the left basal body. Two other roots–one consisting of a 2 + 2 + 1 arrangement of microtubules, the other of a single microtubule only—are associated with the right basal body. The two basal bodies are connected by distal and proximal fibers, and they are linked also to the base of the haptonema, three fibers extending from the haptonemal base to the right basal body, one only to the left. An additional fiber extending from the right basal body passes between the left basal body and the base of the haptonema, terminating at the largest microtubular root. Lateral extensions link this fiber to both the left basal body and the haptonematal base. Negative staining of isolated root systems of C. simplex Estep et al. shows that the arrangement of microtubules and fibrous connections is similar to that in C. acantha. The root system of C. acantha is compared to those of other members of the Prymnesiophyceae.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2233-2241
Certain intracellular organelles such as the endoplasmic reticulum (Terasaki, M., L. B. Chen, and K. Fujiwara. 1986. J. Cell Biol. 103:1557-1568) and lysosomes (Swanson, J., A. Bushnell, and S. C. Silverstein. Proc. Natl. Acad. Sci. USA. 84:1921-1925) form tubular networks that are closely aligned with microtubules. Here we describe the formation of polygonal networks composed of interconnected membrane tubules that occurs when a preparation of microtubule affinity-purified squid kinesin is combined with microtubules and ATP on a glass surface. The membrane, which is a minor contaminant in the microtubule affinity- purified kinesin preparation, binds to microtubules translocating along kinesin-coated glass surfaces. Force exerted by kinesin upon the microtubule is transmitted to the membrane and a tubular extension of the membrane is produced. As the membrane tubule elongates, membrane tension exerts an opposing force upon the translocating microtubule that can alter its direction of movement by dissociating or partially dissociating the microtubule from the kinesin-coated surface. Membrane tubules that come in contact appear to fuse with one another, and thus give rise to two-dimensional polygonal networks of tubules that have similar features to endoplasmic reticulum networks in cells. Artificial liposomes composed of dimyristoylphosphatidylcholine and yolk phosphatidylglycerol also form stable tubular structures when subjected to shear forces, but do not interact with microtubules or form polygonal networks, suggesting that such phenomena may require membrane- associated proteins. These findings indicate that kinesin generates sufficient force to form tubular membrane extensions in vitro and suggest that this microtubule-based motility protein may also be responsible for creating tubular membrane networks within cells.  相似文献   

12.
One fundamental role of the centriole in eukaryotic cells is to nucleate the growth of cilia. The unicellular alga Chlamydomonas reinhardtii provides a simple genetic system to study the role of the centriole in ciliogenesis. Wild-type cells are biflagellate, but “uni” mutations result in failure of some centrioles (basal bodies) to assemble cilia (flagella). Serial transverse sections through basal bodies in uni1 and uni2 single and double mutant cells revealed a previously undescribed defect in the transition of triplet microtubules to doublet microtubules, a defect correlated with failure to assemble flagella. Phosphorylation of the Uni2 protein is reduced in uni1 mutant cells. Immunogold electron microscopy showed that the Uni2 protein localizes at the distal end of the basal body where microtubule transition occurs. These results provide the first mechanistic insights into the function of UNI1 and UNI2 genes in the pathway mediating assembly of doublet microtubules in the axoneme from triplet microtubules in the basal body template.  相似文献   

13.
In addition to their role in nucleating the assembly of axonemal microtubules, basal bodies often are associated with a microtubule organizing center (MTOC) for cytoplasmic microtubules. In an effort to define molecular components of the basal body apparatus in Chlamydomonas reinhardtii, genomic and cDNA clones encoding gamma-tubulin were isolated and sequenced. The gene, present in a single copy in the Chlamydomonas genome, encodes a protein with a predicted molecular mass of 52,161 D and 73% and 65% conservation with gamma-tubulin from higher plants and humans, respectively. To examine the distribution of gamma-tubulin in cells, a polyclonal antibody was raised against two peptides contained within the protein. Immunoblots of Chlamydomonas proteins show a major cross-reaction with a protein of Mr 53,000. In Chlamydomonas cells, the antibody stains the basal body apparatus as two or four spots at the base of the flagella and proximal to the microtubule rootlets. During cell division, two groups of fluorescent dots separate and localize to opposite ends of the mitotic apparatus. They then migrate during cleavage to positions known to be occupied by basal bodies. Changes in gamma-tubulin localization during the cell cycle are consistent with a role for this protein in the nucleation of microtubules of both the interphase cytoplasmic array and the mitotic spindle. Immunogold labeling of cell sections showed that gamma-tubulin is closely associated with the basal bodies. The flagellar transition region was also labeled, possibly indicating a role for gamma-tubulin in assembly of the central pair microtubules of the axoneme.  相似文献   

14.
The organization of microtubular systems in the quadriflagellate unicell Polytomella agilis has been reconstructed by electron microscopy of serial sections, and the overall arrangement confirmed by immunofluorescent staining using antiserum directed against chick brain tubulin. The basal bodies of the four flagella are shown to be linked in two pairs of short fibers. Light microscopy of swimming cells indicates that the flagella beat in two synchronous pairs, with each pair exhibiting a breast-stroke-like motion. Two structurally distinct flagellar rootlets, one consisting of four microtubules in a 3 over 1 pattern and the other of a striated fiber over two microtubules, terminate between adjacent basal bodies. These rootlets diverge from the basal body region and extend toward the cell posterior, passing just beneath the plasma membrane. Near the anterior part of the cell, all eight rootlets serve as attachment sites for large numbers of cytoplasmic microtubules which occur in a single row around the circumference of the cell and closely parallel the cell shape. It is suggested that the flagellar rootless may function in controlling the patterning and the direction of cytoplasmic microtubule assembly. The occurrence of similar rootlet structures in other flagellates is briefly reviewed.  相似文献   

15.
J. C. Hoffman  K. C. Vaughn 《Protoplasma》1995,186(3-4):169-182
Summary Acetylation and tyrosinization are post-translational modifications of tubulin generally associated, respectively, with highly stable or dynamic microtubule arrays in animals and protists. Little is known of these modifications in land plants, however. We examined the presence and distribution of post-translational tubulin modifications in developing spermatogenous cells of the pteridophyteCeratopteris richardii by immunofluorescence and immunogold, utilizing antibodies specific for acetylated and tyrosinated tubulin. Acetylated tubulin is found in mid to late stage spermatogenous cells in stable microtubule configurations: the spline, flagella, and basal bodies. Tyrosinated tubulin, a modification associated with dynamic microtubule arrays, is also present in these structures as well as all other microtubules in the cell. The lamellar strip of the multilayered structure, a body previously described as tubulin-containing, was not labelled by any of the tubulin antibodies or antiserum. Treatment of cultures with the microtubule stabilizer taxol results in the appearance of new arrays of microtubules, including bundles in the cytoplasm. Only those new taxol-induced microtubule arrays present in mid to late stage cells (i.e., those with other normally acetylated tubulin arrays) have acetylated domains. Younger spermatogenous cells had similar microtubule bundles but no acetylated tubulin. Tyrosinated tubulin was found in all these taxol-stabilized arrays. These data indicate that, although these pteridophyte cells have the ability to acetylate tubulin, that this ability is limited to stages after the final spermatogenous cell mitosis and is limited to the highly stable spline and flagella microtubules.Abbreviations LS lamellar strip of multilayered structure - MTOC microtubule organizing center  相似文献   

16.
This report is an ultrastructural analysis of the organization of the isolated oral apparatus of Tetrahymena pyriformis, strain WH-6, syngen 1. Attention has been focused on the organization of microtubules and filaments in oral apparatus membranelles. Oral apparatus membranellar basal bodies were characterized with respect to structural differentiations at the distal and proximal ends. The distal region of membranellar basal bodies contains the basal plate, accessory microtubules and filaments. The proximal end contains a dense material from which emanate accessory microtubules and filaments. There are at least two possibly three different arrangements of accessory structures at the proximal end of membranellar basal bodies. All membranellar basal bodies appear to have a dense material at the proximal end from which filaments emanate. Some of these basal bodies have accessory microtubules and filaments emanating from this dense material. A possible third arrangement is represented by basal bodies which have lateral projections, from the proximal end, of accessory microtubules and filaments which constitute cross or peripheral connectives. There are at least three examples of direct associations between oral apparatus microtubules and filaments: (1) filaments which form links between basal body triplet microtubules, (2) filaments which link the material of the basal plate to internal basal body microtubules, (3) filaments which link together microtubule bundles from membranellar connectives. KCl extraction of the isolated oral apparatus resulted in the selective solubilization of oral apparatus basal bodies, remnants of ciliary axonemes and fused basal plates. Based on their response to KCl extraction two distinct sets of morphologically similar micro tubules can be identified: (a) microtubules which constitute the internal structure of basal bodies and ciliary axonemes, (b) microtubules which constitute the fiber connectives between basal bodies.  相似文献   

17.
Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.  相似文献   

18.
The marine dinoflagellate Oxyrrhis marina has three major microtubular systems: the flagellar apparatus made of one transverse and one longitudinal flagella and their appendages, cortical microtubules, and intranuclear microtubules. We investigated the dynamic changes of these microtubular systems during cell division by transmission and scanning electron microscopy, and confocal fluorescent laser microscopy. During prophase, basal bodies, both flagella and their appendages were duplicated. In the round nucleus situated in the cell centre, intranuclear microtubules appeared radiating toward the centre of the nucleus from densities located in some nuclear pores. During metaphase, both daughter flagellar apparatus separated and moved apart along the main cell axis. Microtubules of ventral cortex were also duplicated and moved with the flagellar apparatus. The nucleus flattened in the longitudinal direction and became discoid-shaped close to the equatorial plane. Many bundles of microtubules ran parallel to the short axis of the nucleus (cell long axis), between which chromosomes were arranged in the same direction. During ana-telophase, the nucleus elongated along the longitudinal axis and took a dumbbell shape. At this stage a contractile ring containing actin was clearly observed in the equatorial cortex. The cortical microtubule network seemed to be cut into two halves at the position of the actin bundle. Shortly after, the nucleus divided into two nuclei, then the cell body was constricted at its equator and divided into one anterior and one posterior halves which were soon rebuilt to produce two cells with two full sets of cortical microtubules. From our observations, several mechanisms for the duplication of the microtubule networks during mitosis in O. marina are discussed.  相似文献   

19.
This study provides a comprehensive, high-resolution structural analysis of the central-pair microtubule apparatus of sperm flagella. It describes the arrangement of several microtubule-associated "sheath" components and suggests, contrary to previous thinking, that microtubules are structurally asymmetric. The two microtubules of the central pair are different in several respects: the C2 tubule bears a single row of 18-nm-long sheath projections with an axial periodicity of 16 nm, whereas the C1 tubule possesses rows of 9-nm globular sheath components with an axial repeat of 32 nm. The lumen of the C2 tubule always appears completely filled with electron-dense material; that of the C1 tubule is frequently hollow. The C2 tubule also possesses a series of beaded chains arranged around the microtubule; the beaded chains are composed of globular subunits 7.5-10 nm in diameter and appear to function in the pairing of the C1 and C2 tubules. These findings indicate: that the beaded chains are not helical, but assume the form of lock washers arranged with a 16-nm axial periodicity on the microtubule; and that the lattice of tubulin dimers in the C2 tubule is not helically symmetric, but that there are seams between certain pairs of protofilaments. Proposed lattice models predict that, because of these seams, central pair and perhaps all singlet microtubules may contain a ribbon of 2-5 protofilaments that are resistant to solubilization; these models are supported by the results of the accompanying paper (R. W. Linck, and G. L. Langevin. 1981. J. Cell Biol. 89: 323-337.  相似文献   

20.
Ultrastructure of the motile zoospore has been investigated in Oedocladium catolinianum & Hoffman. An unwalled zoospore is usually produced from the contents of a terminal vegetative cell and consists of two principal regions: a small anterior dome and a larger body region; a ring of flagella marks the juncture of these two areas. Chloroplast inclusions consist of thylakoids, mature and incipient pyrenoids, starch and striated microtubules; no eyespot has been observed. Zoospores appear to possess permanent contractile vacuoles with numerous accessory vacuoles, coated vesicles and occasionally coated tubules. The cytoplasm of the dome contains numerous mitochondria ER and golgi bodies, as well as two distinct types of vesicles. The first contains an electron-dense; granular core and is surrounded by a loose, sinuate membrane. The second vesicle is electron-opaque and is found at the apex of the dome: it contains mucopolysaccharides employed during zoospore adhesion. A complex flagellar apparatus encircles the lower region of the dome. It consists of ca. 30–65 flagella, a ring-shaped fibrous band, flagella roots and additional supporting material. The flagella and roots alternate with one another beneath the fibrous band. The compound flagellar roots consist of two superimposed components: an outer ribbon-like unit composed of three microtubular elements and a single striated inner component. A band of support material lies beneath the proximal end of the basal bodies. It is a continuous fibrous band, although it often appears as three distinct, repetitive units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号