首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C W Wuenschell  A J Tobin 《Neuron》1988,1(9):805-815
We used in situ hybridization of 35S-labeled antisense RNAs to study the cellular distribution of three neuronal mRNAs. We compared the expression of these RNAs in cerebellar Purkinje neurons in wild-type (C57Bl-6J) mice and in two mutants (Weaver and reeler) known to have abnormal cerebellar morphologies. In normal mice, GAD mRNA is present in four sets of neurons in the cerebellar cortex while calbindin mRNA is present only in Purkinje neurons. Proenkephalin mRNA is present in Golgi II neurons as well as in a set of neurons in the deep part of the molecular layer. Despite the dramatic differences in structural organization and inputs of Purkinje neurons in the cerebella of adult Weaver and reeler mice, the expression of these RNAs appears unchanged. These results support the hypothesis that Purkinje cell cytodifferentiation proceeds autonomously after its inception in early embryonic life.  相似文献   

2.
Corticotropin releasing factor (CRF) is present in the adult, as well as in the embryonic and postnatal rodent cerebellum. Further, the distribution of the type 1 CRF receptor has been described in adult and postnatal animals. The focus of the present study is to determine the distribution and cellular relationships of the type 1 CRF receptor (CRF-R1) during embryonic development of the cerebellum. Between embryonic day (E)11 and E12, CRF-R1 immunoreactive puncta are uniformly distributed in the ventricular zone, the site of origin of Purkinje cells, nuclear neurons, and GABAergic interneurons, as well as the germinal trigone, the birthplace of the precursors of granule cells. Between E13 and 18, the distribution of immunolabeled puncta decreases in both the ventricular zone and the germinal trigone and increases in the intermediate zone, as well as in the dorsal aspect of the cerebellar plate. Between E14 and 18, antibodies that label specific populations of cerebellar neurons were combined with the antibody for the receptor to determine the cellular elements that expressed CRF-R1. At E14, CRF-R1 immunoreactivity is co-localized in neurons immunolabeled with PAX-2, an antibody that is specific for GABAergic interneurons. These neurons continue to express CRF-R1 as they migrate dorsally toward the cerebellar surface. Between E16 and 18, Purkinje cells, immunolabeled with calbindin, near the dorsal surface of the cerebellum express CRF-R1 in their cell bodies and apical processes. CRF has been shown to have a depolarizing effect on adult and postnatal Purkinje cells. Further, CRF has been shown to contribute to excitability of hippocampal neurons during embryonic development by binding to CRF-R1; depolarization induced excitability appears to be critical for cell survival. The location of the type one CRF receptor and the presence of its primary ligand, CRF, in the germinal zones of the cerebellum and in migrating neurons suggest that this receptor/ligand interaction could be important in the regulation of neuronal survival through cellular mechanisms that lead to depolarization of embryonic cerebellar neurons.  相似文献   

3.
Olivo- and spinocerebellar maps in the adult cerebellum of small rodents are discontinuous, with sharp boundaries. Cortical Purkinje cells constitute a heterogeneous population, organized into parasagittal, mutually exclusive compartments. The boundaries of the intrinsic cortical compartments and those of the projectional maps are congruent. During development; (i) The incoming olivary fibres, once they penetrate in the cerebellar parenchyma, are attracted toward their ultimate terminal fields, without passing through a stage of random dispersion. (ii) Migrating Purkinje cells and inferior olivary neurons begin, asynchronously, to express cellular markers in an independent manner, giving rise to a transient compartmentation of the cerebellar cortex and the inferior olivary complex respectively. In both instances, the biochemical heterogeneity disappears during the first postnatal week, simultaneously with the acquisition of adult-like cerebellar maps. (iii) The formation of the maps is an early event, prior to the establishment of the synaptology of the cerebellar cortical circuitry. Moreover, the organization of the spinocerebellar projection in adult mutant mice does not depend on the presence of granule cells (staggerer) but on the presence of normal Purkinje cells (weaver), indicating that synaptogenesis with their target neurons is not involved in the process of map formation. The matching of region specific chemical labels between incoming afferent fibres and heterogeneous sets of Purkinje cells is the most appealing mechanism for the formation of cerebellar maps.  相似文献   

4.
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1+ granule cells and vglut2high cells, which receive Purkinje cell inputs; some vglut2high cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2+ neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.  相似文献   

5.
Summary Five monoclonal antibodies reacting with intracellular constituents of Purkinje cells were investigated by means of indirect immunofluorescence on fresh-frozen sections of the cerebellum and retina from developing and adult normal and mutant mice. Antibodies PC1, PC2 and PC3, which recognize Purkinje cells, but no other cerebellar neuron type, label these cells from day 4 onward. PC4 antigen is expressed in addition to Purkinje cells also in granule cells and neurons of deep cerebellar nuclei and appears in Purkinje cells at day 4. M1 antigen (Lagenaur et al. 1980) is first detectable in Purkinje cell bodies by day 5; it is also detectable in deep cerebellar neurons. In the adult retina, only PC4 antigen is detectably expressed and is localized in the inner segments of photoreceptor cells.The neurological mutants weaver, reeler,jimpy and wobbler show detectable levels of these antigens in Purkinje cells. However, the mutants staggerer and Purkinje cell degeneration are abnormal in expression PC1, PC2, PC3, and M1 antigens. Staggerer never starts to express the antigens during development, whereas Purkinje cell degeneration first expresses the antigens, but then loses antigen expression after day 23. PC4 antigen is detectable in the remaining Purkinje cells in staggerer and Purkinje cell degeneration mice at all ages tested in this study. Deep cerebellar neurons are positive for both antigens, PC4 and M1, in all mutants and at all ages studied. In retinas of staggerer and Purkinje cell degeneration mutants, PC4 antigen is normally detectable in the inner segments of photoreceptor cells, even when these have started to degenerate in the case of Purkinje cell degeneration.  相似文献   

6.
Gorodetsky E  Calkins S  Ahn J  Brooks PJ 《DNA Repair》2007,6(11):1698-1707
The genetic disease ataxia telangiectasia (AT) results from mutations in the ataxia telangiectasia mutated (ATM) gene. AT patients develop a progressive degeneration of cerebellar Purkinje neurons. Surprisingly, while ATM plays a criticial role in the cellular reponse to DNA damage, previous studies have localized ATM to the cytoplasm of rodent and human Purkinje neurons. Here we show that ATM is primarily localized to the nucleus in cerebellar Purkinje neurons in postmortem human brain tissue samples, although some light cytoplasmic ATM staining was also observed. No ATM staining was observed in brain tissue samples from AT patients, verifying the specificity of the antibody. We also found that antibodies against components of the Mre11/Rad50/Nbs1 (MRN) complex showed strong staining in Purkinje cell nuclei. However, while ATM is present in both the nucleoplasm and nucleolus, MRN proteins are excluded from the nucleolus. We also observed very high levels of topoisomerase 1 (TOP1) in the nucleus, and specifically the nucleolus, of human Purkinje neurons. Our results have direct implications for understanding the mechanisms of neurodegeneration in AT and AT-like disorder.  相似文献   

7.
Purkinje cells play a crucial role in sensory motor coordination since they are the only output projection neurons in the cerebellar cortex and are affected in most spinocerebellar ataxias. They stand out in the central nervous system due to their large size and their profusely branched dendritic arbor. However, molecular and cellular studies on Purkinje cells are often hampered by the difficulty of maintaining these cells in culture. Here we report an easy, robust and reproducible method to obtain Purkinje-enriched mixed cerebellar cell cultures from day 16 mouse embryos using papain digestion and a semi-defined culture medium, being the composition of the culture approximately 20% Purkinje cells, 70% non-Purkinje neurons and 10% glial cells. We demonstrate that efficient gene transfer into Purkinje cells (as well as into other cerebellar populations) is possible using herpes simplex virus-1 (HSV-1)-derived vectors. Indeed, up to 50% of the Purkinje cells can be transduced and gene expression may persist for at least 14 days. As a result, this procedure permits functional gene expression studies to be carried out on cultured Purkinje neurons. To demonstrate this, we show that the expression of a dominant-negative form of glycogen synthase kinase-3 protects Purkinje neurons against cell death triggered by a chemical inhibitor of phosphatidylinositol-3 kinase. In summary, we have established reproducible and reliable cerebellar cell cultures enriched for Purkinje cells which enables gene transfer studies to be carried out using herpesviral vectors.  相似文献   

8.
为探讨青年猫和老年猫小脑皮质GABA能神经元及其表达的年龄相关性变化,利用Nissl染色显示小脑皮质结构及神经元,免疫组织化学ABC法标记GABA免疫阳性神经元。光镜下观察,采集图像,并利用图像分析软件对分子层、蒲肯野细胞层和颗粒层神经元及GABA免疫阳性神经元及其灰度值进行分析统计。结果显示,GABA免疫阳性神经元、阳性纤维及终末在青年猫和老年猫小脑皮质各层均有分布。与青年猫相比,老年猫分子层、蒲肯野细胞层神经元和GABA免疫阳性神经元密度及其GABA免疫阳性反应强度均显著下降(P<0.01),颗粒层神经元密度和GABA免疫阳性强度也显著下降(P<0.01),但其GABA免疫阳性神经元密度无显著变化(P>0.05);蒲肯野细胞的胞体萎缩,阳性树突分枝减少。因此认为,衰老过程中猫小脑皮质GABA能神经元的丢失和GABA表达的下降,可能是老年个体运动协调、精确调速和运动学习等能力下降的重要原因之一。  相似文献   

9.
The highly conserved dual-specificity tyrosine phosphorylation–regulated kinase 1A (Dyrk1A) plays crucial roles during central nervous system development and homeostasis. Furthermore, its hyperactivity is considered responsible for some neurological defects in individuals with Down syndrome. We set out to establish a zebrafish model expressing human Dyrk1A that could be further used to characterize the interaction between Dyrk1A and neurological phenotypes. First, we revealed the prominent expression of dyrk1a homologs in cerebellar neurons in the zebrafish larval and adult brains. Overexpression of human dyrk1a in postmitotic cerebellar Purkinje neurons resulted in a structural misorganization of the Purkinje cells in cerebellar hemispheres and a compaction of this cell population. This impaired Purkinje cell organization was progressive, leading to an age-dependent dispersal of Purkinje neurons throughout the cerebellar molecular layer with larval swim deficits resulting in miscoordination of swimming and reduced exploratory behavior in aged adults. We also found that the structural misorganization of the larval Purkinje cell layer could be rescued by pharmacological treatment with Dyrk1A inhibitors. We further reveal the in vivo efficiency of a novel selective Dyrk1A inhibitor, KuFal194. These findings demonstrate that the zebrafish is a well-suited vertebrate organism to genetically model severe neurological diseases with single cell type specificity. Such models can be used to relate molecular malfunction to cellular deficits, impaired tissue formation, and organismal behavior and can also be used for pharmacological compound testing and validation.  相似文献   

10.
Selenium exerts many, if not most, of its physiological functions as a selenocysteine moiety in proteins. Selenoproteins are involved in many biochemical processes including regulation of cellular redox state, calcium homeostasis, protein biosynthesis, and degradation. A neurodevelopmental syndrome called progressive cerebello-cortical atrophy (PCCA) is caused by mutations in the selenocysteine synthase gene, SEPSECS, demonstrating that selenoproteins are essential for human brain development. While we have shown that selenoproteins are required for correct hippocampal and cortical interneuron development, little is known about the functions of selenoproteins in the cerebellum. Therefore, we have abrogated neuronal selenoprotein biosynthesis by conditional deletion of the gene encoding selenocysteyl tRNA[Ser]Sec (gene symbol Trsp). Enzymatic activity of cellular glutathione peroxidase and cytosolic thioredoxin reductase is reduced in cerebellar extracts from Trsp-mutant mice. These mice grow slowly and fail to gain postural control or to coordinate their movements. Histological analysis reveals marked cerebellar hypoplasia, associated with Purkinje cell death and decreased granule cell proliferation. Purkinje cell death occurs along parasagittal stripes as observed in other models of Purkinje cell loss. Neuron-specific inactivation of glutathione peroxidase 4 (Gpx4) used the same Cre driver phenocopies tRNA[Ser]Sec mutants in several aspects: cerebellar hypoplasia, stripe-like Purkinje cell loss, and reduced granule cell proliferation. Parvalbumin-expressing GABAergic interneurons (stellate and/or basket cells) are virtually absent in tRNA[Ser]Sec-mutant mice, while some remained in Gpx4-mutant mice. Our data show that selenoproteins are specifically required in postmitotic neurons of the developing cerebellum, thus providing a rational explanation for cerebellar hypoplasia as occurring in PCCA patients.  相似文献   

11.
Summary Cells from one-day-old cerebellum were grown for up to 30 days in dispersed cell culture. The characteristic neurons (deep cerebellar, Golgi and Purkinje cells) maintained their properties. It was found histochemically that some of the large cells display strong AChE activities in the perikaryon and in some processes, while biochemically the specific activities of the marker enzymes of the acetylcholine system, AChE (EC 3.1.1.7) and ChAc (EC 2.3.1.6), were increased and unchanged, respectively. During cultivation, the number of AChE-positive neurons increased. It can be inferred from these studies that, besides the AChE-positive (cholinoceptive) cells, ChAc-active (cholinergic) neurons (possibly Golgi II. type cells and some neurons in the deep cerebellar nuclei) are present in the cerebellum of the rat.  相似文献   

12.
Cells from one-day-old cerebellum were grown for up to 30 days in dispersed cell culture. The characteristic neurons (deep cerebellar, Golgi and Purkinje cells) maintained their properties. It was found histochemically that some of the large cells display strong AChE activities in the perikaryon and in some processes, while biochemically the specific activities of the marker enzymes of the acetylcholine system, AChE (EC 3.1.1.7) and ChAc (EC 2.3.1.6), were increased and unchanged, respectively. During cultivation, the number of AChE-positive neurons increased. It can be inferred from these studies that, besides the AChE-positive (cholinoceptive) cells, ChAc-active (cholinergic) neurons (possibly Golgi II. type cells and some neurons in the deep cerebellar nuclei) are present in the cerebellum of the rat.  相似文献   

13.
Development and evolution of cerebellar neural circuits   总被引:1,自引:0,他引:1  
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.  相似文献   

14.
Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.  相似文献   

15.
16.
17.
Mammalian glutamate receptor (GluR) delta2 is selectively expressed in cerebellar Purkinje cells and plays key roles in cerebellar plasticity, motor learning, and neural wiring. Here, we isolated cDNA encoding the zebrafish ortholog of mammalian GluRdelta2. We found that in adult zebrafish brain, glurdelta2 mRNA was expressed not only in cerebellar Purkinje cells, but also in the crest cells of the medial octavolateral nucleus (MON) and the type I neurons of the optic tectum. Immunohistochemical analysis revealed that zebrafish GluRdelta2 proteins were selectively localized in the apical dendrites of these neurons. Interestingly, the crest cells of the MON and the type I neurons of the optic tectum receive large numbers of parallel fiber inputs at the apical dendrites and sensory inputs at the proximal or basal dendrites. These results suggest that the expression of zebrafish GluRdelta2 is selective for cerebellum-like neural wiring with large numbers of parallel fiber inputs.  相似文献   

18.
19.
Abstract: Ceramide generated from sphingomyelin has emerged as a new but conserved type of biologically active lipid. We previously found that endogenous sphingolipids are required for the normal growth of cultured cerebellar Purkinje neurons and that sphingomyelin is present abundantly in the somatodendritic region of these cells. To gain further insight into a potential role of the sphingomyelin/ceramide pathway, we investigated the effects of depletion of sphingolipids on the phenotypic growth and survival of immature Purkinje cells and the ability of ceramide or other sphingolipids to antagonize these effects. Inhibition of ceramide synthesis by ISP-1, a specific inhibitor of serine palmitoyltransferase, decreased cellular levels of sphingolipids. This treatment resulted in a decrease in cell survival accompanied by an induction of apoptotic cell death and aberrant dendritic differentiation of Purkinje cells with no detectable changes in other cerebellar neurons. Cell-permeable ceramides, sphingosine, or sphingomyelin overcame these abnormalities more effectively than other sphingolipids when added simultaneously with ISP-1. Exposure to bacterial sphingomyelinase in turn enhanced cell survival and dendritic branching complexity of Purkinje cells at different optimal concentrations. Furthermore, cell-permeable ceramide acted synergistically with the neurotrophin family, which has been previously shown to support Purkinje cell survival. These observations suggest that ceramide is a requisite for the survival and the dendritic differentiation of Purkinje cells.  相似文献   

20.
Neural visinin-like proteins (VILIPs) are members of the neuronal subfamily of intracellular EF-hand calcium sensor proteins termed the NCS family, which are thought to play important roles in cellular signal transduction. While numerous studies suggest a wide but uneven distribution of these proteins in rat and chicken brain, their location in, and possible significance for, the human brain, remains to be established. We used specific polyclonal antisera to map the human brain for VILIP-1 and VILIP-3 immunoreactivities. VILIP-1 was detected in cortical pyramidal cells and interneurons, septal, subthalamic and hippocampal neurons (subfields CA1 and CA4 pyramidal cells and especially hilar interneurons) as well as in cerebellar Golgi, basket, granule, stellate and dentate nucleus neurons. Purkinje cells were free of immunoreaction. VILIP-3 was more restricted in its distribution. It was identified in cerebellar Purkinje cells and a subpopulation of granule neurons. Further, neurons belonging to different nuclei of the brain stem and multiple subcortical nerve cells stained for visinin-like protein 3. A weak immunoreaction appeared in cortical and hippocampal neurons. Intracellularly the immunoreactivity appeared in the perikarya, dendrites and some axons. Sometimes, immunostaining was found in the neuropil. Glia did not express visinin-like proteins. Our findings support, from a neuroanatomical viewpoint, the idea that these calcium sensor proteins may be of relevance for neuronal signalling in the human CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号