首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of mammalian ornithine decarboxylase (ODC) (EC 4.1.1.17) by 26 S proteasome, is accelerated by the ODC antizyme (AZ), a trigger protein involved in the specific degradation of eukaryotic ODC. In prokaryotes, AZ has not been found. Previously, we found that in Selenomonas ruminantium, a strictly anaerobic and Gram-negative bacterium, a drastic degradation of lysine decarboxylase (LDC; EC 4.1.1.18), which has decarboxylase activities toward both L-lysine and L-ornithine with similar K(m) values, occurs upon entry into the stationary phase of cell growth by protease together with a protein of 22 kDa (P22). Here, we show that P22 is a direct counterpart of eukaryotic AZ by the following evidence. (i) P22 synthesis is induced by putrescine but not cadaverine. (ii) P22 enhances the degradation of both mouse ODC and S. ruminantium LDC by a 26 S proteasome. (iii) S. ruminantium LDC degradation is also enhanced by mouse AZ replacing P22 in a cell-free extract from S. ruminantium. (iv) Both P22 and mouse AZ bind to S. ruminantium LDC but not to the LDC mutated in its binding site for P22 and AZ. In this report, we also show that P22 is a ribosomal protein of S. ruminantium.  相似文献   

2.
Plant and animal cells contain pools of endogenous peptides, which are the degradation products of functionally active proteins. It is known that these peptides can possess biological activity; however, the functions of most of them are unknown. The goal of the present study was to estimate the antimicrobial potential of endogenous peptides resulting from the degradation of functional proteins in cells of the moss Physcomitrella patens. Earlier, 117 peptides possessing an antimicrobial potential predicted in silico have been identified in the peptidomes of three types of P. patens cells by mass spectrometry. In the present work, the antimicrobial activity of six of these peptides toward the gram-positive bacteria Bacillus subtilis SHgw and Clavibacter michiganensis pv. michiganensis and gram-negative bacteria Escherichia coli K12 and Xanthomonas arboricola 3004 has been revealed. The results have shown that three of six peptides inhibit the growth of the phytopathogenic bacteria X. arboricola and C. m. pv. michiganensis; four peptides inhibit the growth of the gram-negative bacterium E. coli K12, and one peptide inhibits the growth of the gram-positive bacterium B. subtilis. It has been found that the peptides inhibiting the bacterial growth are predominantly the fragments of ribosomal proteins. The work confirms the potential of the biological activity of peptides that are the degradation products of functional proteins.  相似文献   

3.
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.  相似文献   

4.
Lysine decarboxylase (LDC; EC 4.1.1.18) of Selenomonas ruminantium is a constitutive enzyme and is involved in the synthesis of cadaverine, which is an essential constituent of the peptidoglycan for normal cell growth. We purified the S. ruminantium LDC by an improved method including hydrophobic chromatography and studied the fine characteristics of the enzyme. Kinetic study of LDC showed that S. ruminanitum LDC decarboxylated both L-lysine and L-ornithine with similar K m and the decarboxylase activities towards both substrates were competitively and irreversibly inhibited by DL-α-difluoromethylornithine, which is a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17). We also showed a drastic descent of LDC activity owing to the degradation of LDC at entry into the stationary phase of cell growth.  相似文献   

5.
Capacity for sorption of humic acid (HA) from water solutions was shown for 38 bacterial strains. Isotherms of HA sorption were determined for the cells of 10 strains. The bonding strength between the cells and HA (k) and the terminal adsorption (Q max) determined from the Langmuir equation for gram-positive and gram-negative bacteria were reliably different. Gram-positive bacteria sorbed greater amounts of HA than gram-negative ones (Q max = 23 ± 10 and 5.6 ± 1.2 mg/m2, respectively). The bonding strength between HA and the cells was higher in gram-negative bacteria than in gram-positive: k = 9 ± 5 and 3.3 ± 1.1 mL/mg, respectively.  相似文献   

6.
Iran has many hypersaline environments, both the permanent and seasonal ones. One of the seasonal hypersaline lakes in the central desert zone is Aran-Bidgol Lake in which microbial diversity has not been characterized, thus the potential usage of this microbial community in biotechnology remained unknown. In this study, screening the halophilic hydrolytic enzyme-producing bacteria from different areas of this lake led to isolation of 61 gram-positive and 22 gram-negative moderately halophilic bacteria. These bacterial isolates were shown to produce a wide variety of hydrolytic enzymes including DNase, inulinase, amylase, lipase, pectinase, protease, chitinase, pullulanase, cellulase, and xylanase. The most common enzymes were DNase and inulinase in gram-positive bacteria, lipase in gram-negative bacteria, and pullulanase and cellulase in gram-positive cocci. Interestingly, combined hydrolytic activates were observed in some isolates. According to their phenotypic characteristics and comparative partial 16S rRNA sequence analysis, the moderately halophilic strains belonged to the genera Halobacillus, Thalassobacillus, Bacillus, Salinicoccus, Idiomarina, Salicola, and Halomonas.  相似文献   

7.
The Gram stain method was applied to the photometric characterization of aquatic bacterial populations with a charge-coupled device camera and an image analyzer. Escherichia coli and Bacillus subtilis were used as standards of typical gram-negative and gram-positive bacteria, respectively. A mounting agent to obtain clear images of Gram-stained bacteria on Nuclepore membrane filters was developed. The bacterial stainability by the Gram stain was indicated by the Gram stain index (GSI), which was applicable not only to the dichotomous classification of bacteria but also to the characterization of cell wall structure. The GSI spectra of natural bacterial populations in water with various levels of eutrophication showed a distinct profile, suggesting possible staining specificity that indicates the presence of a particular bacterial population in the aquatic environment.Gram’s method is the most important and fundamental orthodox method for bacterial identification. It classifies bacteria into two groups, gram-negative and gram-positive. The mechanism of Gram staining is based on the fundamental structural and chemical attributes of bacterial cell walls. The cell walls of gram-positive bacteria have a high percentage of peptidoglycan, while those of gram-negative bacteria have only a thin peptidoglycan layer (13, 6). In Gram’s method, an insoluble dye-iodine complex is formed inside bacterial cells and is extracted by alcohol from gram-negative but not gram-positive bacteria (6, 12, 16). There are taxonomically gram-variable species, but some cells of gram-negative or gram-positive species may show gram-variable characteristics due to environmental stress, such as unsuitable nutrients, temperature, pH, or electrolytes (3).Functional differences between gram-positive and gram-negative cell walls have been studied with special emphasis on nutrient uptake from the ambient environment. Gram-negative bacteria have a periplasmic space between the lipopolysaccharide layer and the plasma membrane. In this space, binding proteins initially attach to nutrients and take them to a membrane carrier. Gram-positive bacteria lack the periplasmic space and are believed to have no binding proteins (9). Therefore, nutrient uptake from the environment is easier for gram-negative bacteria than for gram-positive bacteria. Because of this difference, the population density of gram-negative bacteria in more oligotrophic environments could be higher than that of gram-positive bacteria (20).Gram staining is commonly used only to reflect cell wall structure. If Gram staining characterizes not only simple taxonomical dichotomy but also multiple biological functions, it may also be used to correlate bacterial cell wall structure with related physiological responses to the environment. In particular, Gram staining could supply ecological information on natural bacterial populations that are difficult to culture by the present technology.Membrane filter methods are widely used for microscopy in aquatic microbiology because of the low population densities of bacteria in many aquatic environments (4, 11, 16). However, these methods sometimes have problems associated with microscopic observations, causing unclear images of bacterial cells on Nuclepore filters when used with the conventional mounting medium (immersion oil; refractive index [nd] = 1.514). Hence, a suitable mounting agent must be applied to obtain precise image analyses of Gram-stained bacteria on Nuclepore filters.In this study, we have established a distinct method to characterize photometric Gram stain images; it involves the Gram stain index (GSI) for specifying natural bacterial populations in various aquatic environments. For this purpose, we have standardized the GSI of typical gram-negative and gram-positive bacteria by using Escherichia coli and Bacillus subtilis, respectively, and compared these GSI values to those of natural bacterial populations of several freshwater environments. The natural waters we investigated were Hyoutaro-ike pond, Matsumi-ike bog, and Lake Kasumigaura, which are oligotrophic, mesotrophic, and eutrophic water bodies, respectively, as previously determined (8, 10, 13, 18, 22, 23).  相似文献   

8.
9.
Magnetic deposition, quantitation, and identification of bacteria reacting with the paramagnetic trivalent lanthanide ion, Er3+, was evaluated. The magnetic deposition method was dubbed thin-film magnetopheresis. The optimization of the magnetic deposition protocol was accomplished with Escherichia coli as a model organism in 150 mM NaCl and 5 mM ErCl3 solution. Three gram-positive bacteria, Staphylococcus epidermidis, Staphylococcus saprophyticus, and Enterococcus faecalis, and four gram-negative bacteria, E. coli, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, were subsequently investigated. Quantitative analysis consisted of the microscopic cell count and a scattered-light scanning of the magnetically deposited material aided by the computer data acquisition system. Qualitative analysis consisted of Gram stain differentiation and fluorescein isothiocyanate staining in combination with selected antisera against specific types of bacteria on the solid substrate. The magnetic deposition protocol allowed quantitative detection of E. coli down to the concentration of 105 CFU ml-1, significant in clinical diagnosis applications such as urinary tract infections. Er3+ did not interfere with the typical appearance of the Gram-stained bacteria nor with the antigen recognition by the antibody in the immunohistological evaluations. Indirect antiserum-fluorescein isothiocyanate labelling correctly revealed the presence of E. faecalis and P. aeruginosa in the magnetically deposited material obtained from the mixture of these two bacterial species. On average, the reaction of gram-positive organisms was significantly stronger to the magnetic field in the presence of Er3+ than the reaction of gram-negative organisms. The thin-film magnetophoresis offers promise as a rapid method for quantitative and qualitative analysis of bacteria in solutions such as urine or environmental water.  相似文献   

10.
11.

Background

Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO).

Methods

The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells.

Results

MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO.

Conclusions

Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.  相似文献   

12.
Recently, DNA packaged within nuclease-resistant membrane vesicles of Neisseria gonorrhoeae and Borrelia burgdorferi was described. This study assayed 18 species of gram-negative and gram-positive eubacteria for nuclease-protected DNA associated with extracellular membrane vesicles. Vesicles from only the gram-negative bacteria contained nuclease-protected linear or supercoiled DNAs or both.  相似文献   

13.
Currently, multidrug-resistant bacteria are rapidly increasing worldwide because of the misuse or overuse of antibiotics. In particular, few options exist for treating infections caused by long-persisting oxacillin-resistant strains and recently proliferating carbapenem-resistant strains. Therefore, alternative treatments are urgently needed. The antimicrobial peptide (AMP) Lycosin-II is a peptide consisting of 21 amino acids isolated from the venom of the spider Lycosa singoriensis. Lycosin-II showed strong antibacterial activity and biofilm inhibition effects against gram-positive and gram-negative bacteria including oxacillin-resistant Staphylococcus aureus (S. aureus) and meropenem-resistant Pseudomonas aeruginosa (P. aeruginosa) isolated from patients. In addition, Lycosin-II was not cytotoxic against human foreskin fibroblast Hs27 or hemolytic against sheep red blood cells at the concentration of which exerted antibacterial activity. The mechanism of action of Lycosin-II involves binding to lipoteichoic acid and lipopolysaccharide of gram-positive and gram-negative bacterial membranes, respectively, to destroy the bacterial membrane. Moreover, Lycosin-II showed anti-inflammatory effects by inhibiting the expression of pro-inflammatory cytokines that are increased during bacterial infection in Hs27 cells. These results suggest that Lycosin-II can serve as a therapeutic agent against infections with multidrug-resistant strains.  相似文献   

14.
A heterogeneous biocatalyst for the biotransformation of nitriles and amides of carboxylic acids in the form of cells of nitrile-hydrolyzing bacteria immobilized on the carrier, was created based on multiwalled carbon nanotubes (MWCNTs). It was shown that bacterial cells form aggregates in contact with powderformed purified or unpurified MWCNTs. The amount of both gram-positive and gram-negative bacteria binding with unpurified MWCNTs was significantly higher than with purified. The nitrile hydratase and amidase activity of bacterial aggregates of purified MWCNTs was preserved to a greater extent as compared to that of unpurified MWCNTs and cells adhered to the surface of the carbonized pyrosealing material with MWCNTs. Both gram-positive Rhodococcus ruber gt1 and gram-negative Alcaligenes faecalis 2 remained viable when cultured in the presence of purified or unpurified MWCNTs. The obtained heterogeneous biocatalyst can be easily separated from the medium by filtration and can be used repeatedly.  相似文献   

15.
Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni2+- and Cd2+-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to our knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications for such recombinant staphylococci as biosorbents are discussed.  相似文献   

16.
Autoclaved cells of gram-positive bacteria or mixed rumen organisms promote the growth of rumen strains of Methanobacterium ruminantium, but cells of E. coli were only stimulatory to growth after treatment with lysozyme plus EDTA or with EDTA alone.N-acetylglucosamine is identified as one of the growth factors for rumen strains of Mb. ruminantium.  相似文献   

17.
In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC50 (µg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 µg/mL) compared to the reference drug acarbose (21.59 ± 1.5 µg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a non-competitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.  相似文献   

18.
We have determined the nucleotide sequence of a 3.5 kb segment in the recF region of the Staphylococcus aureus chromosome. The gene order at this locus, dnaA-dnaN-recF-gyrB is similar to that found in the replication origin region of many other bacteria. S. aureus RecF protein (predicted molecular mass 42.3 kDa), has 57% amino acid sequence identity with the Bacillus subtilis RecF protein (42.2 kDa), but only 26% with the Escherichia coli RecF protein (40.5 kDa). We have shown that the S. aureus recF gene partially complements the defect of a B. subtilis recF mutant, but does not complement an E. coli recF strain. The amino acid sequence alignment of seven available RecF proteins (five of them from bacteria of gram-negative origin) allowed us to identify eight highly conserved regions (α to θ) and to predict five new conserved regions within the gram-positive group (a to f). We suggest that the basic mechanism of homologous recombination is conserved among free-living bacteria.  相似文献   

19.
Over 195 4-alkyl and 4,4-dialkyl 1,2-bis(4-chlorophenyl)pyrazolidine-3,5-dione derivatives were synthesized, utilizing microwave accelerated synthesis, for evaluation as new inhibitors of bacterial cell wall biosynthesis. Many of them demonstrated good activity against MurB in vitro and low MIC values against gram-positive bacteria, particularly penicillin-resistant Streptococcus pneumoniae (PRSP). Derivative 7l demonstrated antibacterial activity against both gram-positive and gram-negative bacteria. Derivatives 7f and 10a also demonstrated potent nanomolar Kd values in their binding to MurB.  相似文献   

20.
Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22−/− mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22−/− mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号