首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effects of injected l-methionine (2g every second day for 28 days) on liver folates and other constituents of liver associated with folate metabolism were studied in vitamin B(12)-deficient ewes and their pair-fed controls receiving vitamin B(12). The dose rate of methionine used was sufficient to restore almost to normal the elevated excretion in the urine of formiminoglutamate in the deficient animals. 2. Liver folates active for Lactobacillus casei, Streptococcus faecalis R and Pediococcus cerevisiae were severely depressed in deficient livers and were partly restored by methionine. Analysis of the folates after ion-exchange chromatography showed that the major effect of methionine was to increase the concentrations of tetrahydrofolates and formyltetrahydrofolates. Methyltetrahydrofolates were also increased, but there was no effect of methionine on the small amounts of incompletely reduced folates present in deficient livers. The folates present were predominantly penta-, hexa- and hepta-glutamates whether or not animals received vitamin B(12) or methionine. 3. Concentrations of ATP, NAD(+), NADH and NADPH were lower in freeze-clamped liver from vitamin B(12)-deficient sheep than in liver from pair-fed, vitamin B(12)-treated sheep. These changes were not affected by methionine which was also without effect on the elevated K(+)/Na(+) ratios found in deficient livers. 4. The livers of vitamin B(12)-deficient animals contained lower concentrations of choline and higher concentrations of lipid than their pair-fed controls. These effects were reversed by methionine.  相似文献   

2.
1. Metabolism of folate was studied in six ewes in an advanced state of vitamin B(12) deficiency as judged by voluntary food intake and in their pair-fed controls receiving vitamin B(12). A group of four animals that were maintained throughout the experiment at pasture was also studied. 2. After 34-40 weeks on the cobalt-deficient diet urinary excretion of formiminoglutamate by four deficient animals was about 3.2mmol/day and this was not significantly decreased by injection of three of them with about 4.5mug of [2-(14)C]folate/kg body weight per day for 5 days. Three days after the last injection retention of [2-(14)C]folate by the livers of the deficient animals (5.5% of the dose) was lower than that of their pair-fed controls (26% of the dose) but there was no evidence of net retention of injected folate in the livers of either group. Urinary excretion of (14)C indicated that renal clearance of folate may have been impaired in very severe vitamin B(12) deficiency. 3. As estimated by microbiological assays total folates in the livers of animals at pasture (12.9mug/g) included about 24% of 5-methyltetrahydrofolate as compared with about 72% of a total of 12.5mug/g in three further ewes fed on a stock diet of wheaten hay-chaff and lucerne-chaff. Liver folates of vitamin B(12)-deficient animals (0.5mug/g) included about 88% of 5-methyltetrahydrofolate as compared with about 51% of a total of 5.2mug/g in pair-fed animals treated with vitamin B(12). 4. Chromatography of liver folates of the pair-fed animals permitted quantitative estimates of the pteroylglutamates present. The results showed that the vitamin B(12)-deficient livers were more severely depleted of tetrahydrofolates and formyltetrahydrofolates than of methyltetrahydrofolates and that as the deficiency developed they were more severely depleted of the higher polyglutamates than of the monoglutamate within each of these classes. Results from animals injected with [2-(14)C]folate indicated an impairment of the exchange between pteroylmonoglutamates and pteroylpolyglutamates in the livers of deficient animals. 5. In vitamin B(12)-deficient animals with food intakes below 200g/day some of the liver folates were not completely reduced and some degradation of pteroylpolyglutamates was detected. The latter condition may have been associated with fatty liver. 6. The results are discussed in relation to current theories of vitamin B(12)-folate interactions.  相似文献   

3.
1. Administration of propionate caused a twofold increase in the concentrations of lactate and pyruvate in the blood of vitamin B(12)-deficient rats, whereas there was a slight decrease in lactate and a 50% increase in pyruvate in normal rats. 2. Concentrations of total ketone bodies in the blood of normal rats were not significantly altered by propionate administration but the [3-hydroxybutyrate]/[acetoacetate] ratio decreased from 3.0 to 2.0. In the vitamin B(12)-deficient rats there was a 40% decrease in total ketone bodies and a change in the ratio from 3.4 to 1.2. 3. The changes in the concentration of ketone bodies in freeze-clamped liver preparations were similar in pattern to those observed in blood. 4. Propionate administration caused a decrease in the concentration of acetyl-CoA in the livers of both groups of animals, but the absolute decrease was greater in the vitamin B(12)-deficient group. The decrease in the concentration of CoA was similar in both groups. 5. As in blood, there were threefold increases in the concentrations of lactate and pyruvate in the livers of the vitamin B(12)-deficient rats after propionate administration, whereas there was no significant change in the concentrations of these metabolites in the normal rats. 6. There was a 50% inhibition of glucose synthesis in perfused livers from vitamin B(12)-deficient rats when lactate and propionate were substrates as compared with lactate alone. 7. It is concluded that the conversion of lactate into glucose is inhibited in vitamin B(12)-deficient rats after propionate administration, and that this effect is due to inhibition of the pyruvate carboxylase step resulting from a decrease in acetyl-CoA concentration and a postulated increase in methylmalonyl-CoA concentration.  相似文献   

4.
Carnitine metabolism in the vitamin B-12-deficient rat.   总被引:4,自引:1,他引:3       下载免费PDF全文
In vitamin B-12 (cobalamin) deficiency the metabolism of propionyl-CoA and methylmalonyl-CoA are inhibited secondarily to decreased L-methylmalonyl-CoA mutase activity. Production of acylcarnitines provides a mechanism for removing acyl groups and liberating CoA under conditions of impaired acyl-CoA utilization. Carnitine metabolism was studied in the vitamin B-12-deficient rat to define the relationship between alterations in acylcarnitine generation and the development of methylmalonic aciduria. Urinary excretion of methylmalonic acid was increased 200-fold in vitamin B-12-deficient rats as compared with controls. Urinary acylcarnitine excretion was increased in the vitamin B-12-deficient animals by 70%. This increase in urinary acylcarnitine excretion correlated with the degree of metabolic impairment as measured by the urinary methylmalonic acid elimination. Urinary propionylcarnitine excretion averaged 11 nmol/day in control rats and 120 nmol/day in the vitamin B-12-deficient group. The fraction of total carnitine present as short-chain acylcarnitines in the plasma and liver of vitamin B-12-deficient rats was increased as compared with controls. When the rats were fasted for 48 h, relative or absolute increases were seen in the urine, plasma, liver and skeletal-muscle acylcarnitine content of the vitamin B-12-deficient rats as compared with controls. Thus vitamin B-12 deficiency was associated with a redistribution of carnitine towards acylcarnitines. Propionylcarnitine was a significant constituent of the acylcarnitine pool in the vitamin B-12-deficient animals. The changes in carnitine metabolism were consistent with the changes in CoA metabolism known to occur with vitamin B-12 deficiency. The vitamin B-12-deficient rat provides a model system for studying carnitine metabolism in the methylmalonic acidurias.  相似文献   

5.
1. A study was made of the effects of injected l-methionine on the activity of several enzymes of folate metabolism, and on the transport of methotrexate in liver preparations from vitamin B(12)-deficient ewes and their pair-fed controls receiving vitamin B(12). 2. The activities of dihydrofolate reductase (EC 1.5.1.3) and 5-methyltetrahydrofolate-homocysteine transmethylase were significantly decreased in the liver of vitamin B(12)-deficient animals, but were unaffected by l-methionine. 3. The concentration of S-adenosyl-l-methionine in the liver of deficient animals was about one-half of that in normal animals, and was restored to normal by either vitamin B(12) or l-methionine. 4. Methylenetetrahydrofolate reductase (EC 1.1.1.68) from sheep liver was inhibited by S-adenosyl-l-methionine in vitro, but not by concentrations of S-adenosyl-l-methionine found in the liver of vitamin B(12)-deficient animals after injection of physiological amounts of l-methionine. 5. Pteroylpolyglutamate synthetase activity was significantly increased in the liver of vitamin B(12)-deficient animals, and was decreased by intravenous injections of l-methionine. 6. l-Methionine injections increased the initial rate of uptake of methotrexate in liver slices from deficient animals and acted synergistically with vitamin B(12) to increase the quantity taken up in 40min. The failure of folate metabolism in vitamin B(12) deficiency can be satisfactorily explained if l-methionine similarly affects the membrane transport of naturally occurring folates. 7. Further details of the results have been deposited as Supplementary Publication SUP 50028 (4 pages) at the British Library (Lending Division), (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

6.
Contradictory results for concentrations of vitamin B12, holotranscobalamin (holoTC), and methylmalonic acid (MMA) have been reported. We tested the hypothesis that the extracellular vitamin B12 markers are not reflecting the intracellular vitamin B12-dependent biochemical reactions in individuals with type 2 diabetes. The study included 92 patients with diabetes and 72 controls with similar age and sex distribution. We measured vitamin B12 markers [MMA, total serum vitamin B12, holoTC, total homocysteine (tHcy)], red blood cell (RBC)-B12, and the plasma concentrations of the methylation markers [S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)]. In comparison to controls, diabetic patients showed significantly higher concentrations of plasma SAH (median 15.1 vs. 11.8 nmol/L; p < 0.001) and lower SAM/SAH ratio (9.1 vs. 8.2; p = 0.006). Concentrations of total vitamin B12 and holoTC did not differ significantly between the groups, but plasma MMA concentrations were significantly higher in diabetics (250 vs. 206 nmol/L). However, RBC-B12 was lower in diabetics compared to controls (median 230 vs. 260 pmol/L; p = 0.001). The inverse correlation between MMA and RBC-B12 was stronger in the controls compared to that in the patients (correlation coefficient in controls R = −0.446, p = 0.001; in patients R = −0.289, p = 0.022). Metformin treatment was associated with a lower total serum vitamin B12, but a comparable RBC-B12 and a slightly lower MMA and better methylation index. In conclusion, patients with type 2 diabetes showed normal extracellular vitamin B12, but disturbed intracellular B12-dependent biochemical reactions. Metformin treatment was associated with low serum vitamin B12 and improved intracellular vitamin B12 metabolism despite low serum vitamin B12.  相似文献   

7.
The first development of an α-face-specific radioimmunoassay for vitamin B12 is described. Sheep, fed a cobalt-deficient diet, and immunized with a conjugate between Co-β carboxypropyl cobalamin and keyhole limpet hemocyanin, were used to produce antisera. The antisera crossreacted with Co-β derivatives of vitamin B12, but did not crossreact with the α-face vitamin B12 analog cobinamide. The antisera were used to develop a sensitive and reproducible radioimmunoassay that was free from contamination with the nonspecific vitamin B12 binding protein, R-protein. Both the radioimmunoassay and measurements of plasma concentrations of methylmalonic acid were applied to the diagnosis of cobalt/vitamin B12 deficiency in sheep. The assay correlated well with a commercially available radioassay and did not falsely detect normal vitamin B12 concentration in plasma samples containing elevated concentrations of methylmalonic acid.  相似文献   

8.
B. A. Gordon  R. A. Carson 《CMAJ》1976,115(3):233-236
A 3-month-old male infant had two episodes of fever, projectile vomiting, dehydration, generalized fine tremors and gross metabloic ketoacidosis. Methylmalonic acid was found in high concentration in both serum and urine, although the concentration of serum vitamin B12 was normal. A therapeutic trial of vitamin B12, administered parenterally, reduced greatly the methylmalonic aciduria. The patient has since been given vitamin B12 supplements continuously, initially 1 mg intramuscularly every other day, then 15 mg/d orally, and the protein in his diet was subsequently restricted. The most effected control of the methylmalonic aciduria was achieved with the combined regimen of oral vitamin therapy and dietary protein restriction. His physical and intellectual development have progressed normally and he has survived several acute respiratory tract infections without recurrence of metabolic acidosis.  相似文献   

9.
Concentrations of carnitine, acetyl carnitine, propionyl carnitine, and long chain acyl carnitines have been measured in hepatic tissue of normal and vitamin B-12 deficient rats using radiolabelled butyrobetaine to label carnitine pools. Increased levels of propionyl carnitine were seen in the livers of vitamin B-12 deprived animals when compared to those from normal animals. Methylmalonyl carnitine was not detected in the B-12 deprived animals. Free carnitine levels were no different in the livers from the B-12 deprived animals than from the normal control animals.  相似文献   

10.
Vitamin B12 deficiency has been shown to result in an increase in content and activity of the hepatic cytosolic enzymes of fatty acid synthesis. The present study demonstrated that ATP citrate lyase, an enzyme whose activity has been positively correlated with rates of fatty acid biosynthesis, also increased in the livers of B12-deficient animals. Total and specific activity of hepatic citrate synthase, an enzyme whose activity is unaffected by a variety of dietary and hormonal changes, also was found to be increased in the B12-deprived state. By contrast, the activity of hepatic succinate-cytochrome c reductase, a portion of a multicomponent enzyme complex synthesized in part within the mitochondria, was unchanged in B12 deficiency. Vitamin B12 deprivation resulted in an increase in hepatic mitochondrial cristae membranes in both animals and man. Histochemical and chemical analysis demonstrated increased glycogen in the liver cells from B12-deficient animals and man. Thus, in the livers from vitamin B12-deficient animals there is an increased activity of the otherwise highly constant Krebs cycle enzyme citrate synthase, and in both animals and man there are increased mitochondrial cristae membranes.  相似文献   

11.
1. Kidney-cortex slices and the perfused livers of vitamin B(12)-deficient rats removed propionate from the incubation and perfusion media at 33 and 17% respectively of the rates found with tissues from rats receiving either a normal or a vitamin B(12)-supplemented diet. There was a corresponding fall in the rates of glucose synthesis from propionate in both tissues. 2. The addition of hydroxocobalamin or dimethylbenzimidazolylcobamide coenzyme to kidney-cortex slices from vitamin B(12)-deficient rats in vitro failed to restore the normal capacity for propionate metabolism. 3. Although the vitamin B(12)-deficient rat excretes measurable amounts of methylmalonate, no methylmalonate production could be detected (probably because of the low sensitivity of the method) when kidney-cortex slices or livers from deficient rats were incubated or perfused with propionate. 4. The addition of methylmalonate (5mm) to kidney-cortex slices from rats fed on a normal diet inhibited gluconeogenesis from propionate by 25%. 5. Methylmalonate formation is normally only a small fraction of the flux through methylmalonyl-CoA. This fraction increases in vitamin B(12)-deficient tissues (as shown by the urinary excretion of methylmalonate) presumably because the concentration of methylmalonyl-CoA rises as a result of low activity of methylmalonyl-CoA mutase (EC 5.4.99.2). Slow removal of methylmalonyl-CoA might depress propionate uptake owing to the reversibility of the steps leading to methylmalonyl-CoA formation.  相似文献   

12.
Lipid peroxidation in blood of vitamin B6 deficient rats was significantly increased when compared to pair-fed controls. The observed increased lipid peroxidation in vitamin B6 deficiency was correlated with high levels of lipids, metal ions and low levels of antioxidants, alpha-tocopherol, ascorbic acid and reduced GSH. Supplementation of methionine or vitamin E along with the vitamin B6 deficient diet restored the levels of antioxidants to near normal and also protected against oxidative stress. However plasma TBARS level as well as total lipids were still elevated in M-B6 diet fed rats and normalized in E-B6-d rats.  相似文献   

13.
A series of 130 consecutive outpatients with recurrent aphthous stomatitis were screened at the oral medicine department, Glasgow Dental Hospital, for deficienciesin vitamin b12, folic acid, and iron. In 23 patients (17.7%) such deficiencies werefound; five were deficient in vitamin B12, seven in folic acid, and 15 in iron. Four had more than one deficiency. Out of 130 controls matched for age and sex 11 (8.5%) were found to have deficiencies. The 23 deficient patients with recurrent aphthaewere treated with specific replacement therapy, and all 130 patients were followed up for at least one year. Of the 23 patients on replacement therapy 15 showed complete remission of ulceration and eight definite improvement. Of the 107 patientswith no deficiency receiving local symptomatic treatment only 33 had a remission or wereimproved. This difference was significant (P less than 0.001). Most patients withproved vitamin B12 or folic acid deficiency improved rapidly on replacement therapy;those with iron deficiency showed a less dramatic response. The 23 deficient patientswere further investigated to determine the cause of their deficiencies and detect the presence of any associated conditions. Four were found to have Addisonian perniciousanaemia. Seven had a malabsorption syndrome, which in five proved to be a gluten-induced enteropathy. In addition, there were single patients with idiopathic proctocolitis, diverticular disease of the colon, regional enterocolitis, and adenocarcinoma of thecaecum. We suggest that the high incidence of deficiencies found in this series andthe good response to replacement therapy shows the need for haematological screening of such patients.  相似文献   

14.
1. The triglyceride, cholesterol ester and total phospholipid fractions were isolated from the livers and yolk sacs of normal and vitamin B12-deficient chick embryos after 13, 15, 17, 19 and 21 days of incubation, and the fatty acid compositions were determined. 2. At all stages of incubation, the concentration of cholesterol ester in the livers of the normal embryos were greater, and on days 15 and 17 the concentrations of triglyceride were considerably less, than the corresponding concentrations in the livers of the deficient embryos. 3. Between day 13 and day 21 of incubation the concentration of oleic acid in the liver triglycerides of the normal embryos increased, whereas the concentrations of palmitic acid and docosahexaenoic acid decreased. Vitamin B12 deficiency resulted in higher concentrations of palmitic acid in the liver triglycerides on days 15, 17 and 19, higher concentrations of C18 polyunsaturated acids on days 13 and 15 and lower concentrations of oleic acid on days 13, 15, 17 and 19. 4. At all stages of development, cholesterol oleate accounted for almost 80% of the total liver cholesterol esters in both normal and deficient embryos. 5. As development of the normal embryos progressed, the concentrations of palmitic acid and arachidonic acid in the liver phospholipid decreased, whereas the concentrations of stearic acid and docosahexaenoic acid increased. Vitamin B12 deficiency resulted in markedly higher concentrations of stearic acid and palmitic acid and markedly lower concentrations of arachidonic acid and docosahexaenoic acid in the liver phospholipids. 6. Vitamin B12 deficiency did not influence the fatty acid composition of the triglyceride, cholesterol ester and phospholipid fractions either in the yolks of fertile unincubated eggs or in the yolks obtained from eggs that had been incubated for 13, 15, 17, 19 and 21 days.  相似文献   

15.
1. Formiminoglutamic acid, a product of the catabolism of histidine, is excreted in abnormally large amounts in the urines of vitamin B(12)-deficient rats and of vitamin B(12)-deficient sheep; the excretion is reduced to negligible amounts after administration of vitamin B(12). 2. After administration of certain methyl donors to vitamin B(12)-deficient rats or sheep urinary excretion of formiminoglutamic acid is temporarily decreased. 3. Irrespective of the pteroylglutamic acid status of the animals neither vitamin B(12)-deficient rats nor vitamin B(12)-deficient sheep have the ability to deal efficiently with histidine. 4. In sheep, urinary excretion of formiminoglutamic acid is increased after administration of aminopterin; treatment with pteroylglutamic acid restores the ability of the animal to deal with the catabolic products of histidine. 5. The possible functions of vitamin B(12) and methionine in relieving a virtual deficiency of pteroylglutamic acid are discussed.  相似文献   

16.
The effect of administering high levels of folic acid to vitamin B12-deficient animals was studied. In B12 deficiency histidine oxidation is decreased. This is the result of both decreased liver folate levels and increases in the proportion of methyltetrahydrofolates. The purpose of this study was to determine if the addition of very high levels of folic acid to B12-deficient diets could increase liver folates and thereby restore histidine oxidation. Rats were fed a soy protein B12-deficient diet containing 10% pectin which has been shown previously to accelerate B12 depletion. When this diet was supplemented with B12 and folic acid, histidine oxidation was 5.4% in 2 h and the livers contained 3.49 micrograms of folate/g. In the absence of B12, the histidine oxidation rate was 0.34% and the liver folate level was 1.33 micrograms/g. When 200 mg/kg of folic acid was added to the B12-deficient diet there was no increase in histidine oxidation (0.35%) but the liver folates were increased to 3.68 micrograms which is about the same as that with B12 supplementation. The percentage tetrahydrofolate of the total liver folates was the same with and without a high level of dietary folic acid. Thus there was an increase in the absolute level of tetrahydrofolate without any increase in folate function as measured by histidine oxidation. Red cell folate levels were the same with and without B12, which is in contrast to the markedly lower liver folate levels in B12 deficiency. These data suggest a difference between B12 regulation of folate metabolism in the liver and in the bone marrow.  相似文献   

17.
A patient has been described with methylmalonic aciduria because of an inability to release free vitamin B12 from lysosomes. Complementation analysis was performed using fibroblasts from this patient and those from patients having previously described mutations causing methylmalonic aciduria (mut, cblA, cblB, cblC, and cblD). Incorporation of label from [1-14C]propionate into acid-precipitable material was elevated in heterokaryons formed by polyethylene glycol (PEG) treatment of mixed cultures of cells from the patient and all other complementation groups as compared to the incorporation in parallel cultures not treated with PEG. These results indicate that complementation occurred in all cases and support the assignment of the patient to a new complementation group that has been designated cblF.  相似文献   

18.
The effects of vitamin B(6) deficiency on metabolic activities of brain structures were studied. Male Sprague-Dawley weanling rats received one of the following diets: (1) 7 mg pyridoxine HCl/kg (control group); (2) 0 mg pyridoxine HCl/kg (vitamin B(6)-deficient group); or (3) 7 mg pyridoxine HCl/kg with food intake restricted in quantity to that consumed by the deficient group (pair-fed control group). After 8 weeks of dietary treatment, rats in all three groups received an intravenous injection of 2-deoxy-[(14)C] glucose (100 microCi/kg). Vitamin B(6) status was evaluated by plasma pyridoxal 5'-phosphate concentrations. The vitamin B(6)-deficient group had significantly lower levels of plasma pyridoxal 5'-phosphate than did the control and pair-fed groups. The local cerebral glucose utilization rates in structures of the limbic system, basal ganglia, sensory motor system, and hypothalamic system were determined. The local cerebral glucose utilization rates in each of the four brain regions in the deficient animals were approximately 50% lower (P < 0.05) than in the control group. Results of the present study suggest that serious cognitive deficit may occur in vitamin B(6)-deficient animals.  相似文献   

19.
A method of adaptation to cobalt nitrate at high concentrations allowed us to isolate 46 strains of propionic acid bacteria Propionibacterium acidipropionici, resistant to excessive amounts of Co2+ in the medium. Studies of these strains revealed cultures that were most potent in synthesizing vitamin B12. The yield of vitamin B12 was increased 3 times, compared to parent strains.  相似文献   

20.
The efficacies of two nutritional factors, folic acid and vitamin B12, were assessed in this study against arsenic-induced islet cellular toxicity. Rats were divided into four groups consisting of five rats in each group: Group A, control; Group B, arsenic-treated; Group C, arsenic+folic acid; and Group D, arsenic+folic acid+vitamin B12. The dose of arsenic, folic acid and vitamin B12, respectively, was 3 mg, 36 microg and 0.63 microg kg(-1) body weight day(-1) for 30 days. Results showed that, compared to control group, there was a significant increase in the levels of nitric oxide (NO), malondialdehyde (MDA) and hydroxyl radical (OH-) formation in the pancreatic tissue of arsenic-treated rats, while the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and cellular content of antioxidant glutathione (GSH) were low in these animals. The serum level of tumor necrosis factor-alpha (TNF-alpha) and IL-6 was significantly high in these animals. Light microscopic examination showed a marked fall in the number of islet cells. Concomitant administration of either folic acid or folic acid and vitamin B12 with arsenic significantly restored all these parameters. Although folic acid alone could not restore the normal level of TNF-alpha and IL-6, combined folic acid and vitamin B12 could restore it. Folic acid and vitamin B12 combined also could recover islet cell count. These results suggest that folic acid+vitamin B12 are capable of reducing arsenic-induced cellular oxidative and inflammatory toxic changes. Thus, supplement with vitamin B12+folic acid may be predicted as a possible nutritional management strategy against arsenic-induced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号